{"title":"具有最大完工时间和最大延迟目标的双智能体无界串行批调度算法","authors":"Shuguang Li, Mingsong Li, Muhammad Ijaz Khan","doi":"10.3934/nhm.2023073","DOIUrl":null,"url":null,"abstract":"<abstract><p>We study the problem of non-preemptively scheduling jobs from two agents on an unbounded serial-batch machine. Agents $ A $ and $ B $ have $ n_A $ and $ n_B $ jobs. The machine can process any number of jobs sequentially as a batch, and the processing time of the batch is equal to the total processing time of the jobs in it. Each batch requires a setup time before it is processed. Compatibility means that the jobs from different agents can be processed in a common batch; Otherwise, the jobs from different agents are incompatible. Both the compatible and incompatible models are considered, under both the batch availability and item availability assumptions. Batch availability means that any job in a batch is not available until all the jobs in this batch are completed. Item availability means that a job in a batch becomes available immediately after it is completed processing. The completion time of a job is defined to be the moment when it is available. The goal is to minimize the makespan of agent $ A $ and the maximum lateness of agent $ B $ simultaneously. For the compatible model with batch availability, an $ O(n_A+n_B^2\\log n_B) $-time algorithm is presented which improves the existing $ O(n_A+n_B^4\\log n_B) $-time algorithm. A slight modification of the algorithm solves the incompatible model with batch availability in $ O(n_A+n_B^2\\log n_B) $ time, which has the same time complexity as the existing algorithm. For the compatible model with item availability, the analysis shows that it is easy and admits an $ O(n_A+n_B\\log n_B) $-time algorithm. For the incompatible model with item availability, an $ O(n_A+n_B\\log n_B) $-time algorithm is also obtained which improves the existing $ O(n_A+n_B^2) $-time algorithm. The algorithms can generate all Pareto optimal points and find a corresponding Pareto optimal schedule for each Pareto optimal point.</p></abstract>","PeriodicalId":54732,"journal":{"name":"Networks and Heterogeneous Media","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithms for two-agent unbounded serial-batch scheduling with makespan and maximum lateness objectives\",\"authors\":\"Shuguang Li, Mingsong Li, Muhammad Ijaz Khan\",\"doi\":\"10.3934/nhm.2023073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<abstract><p>We study the problem of non-preemptively scheduling jobs from two agents on an unbounded serial-batch machine. Agents $ A $ and $ B $ have $ n_A $ and $ n_B $ jobs. The machine can process any number of jobs sequentially as a batch, and the processing time of the batch is equal to the total processing time of the jobs in it. Each batch requires a setup time before it is processed. Compatibility means that the jobs from different agents can be processed in a common batch; Otherwise, the jobs from different agents are incompatible. Both the compatible and incompatible models are considered, under both the batch availability and item availability assumptions. Batch availability means that any job in a batch is not available until all the jobs in this batch are completed. Item availability means that a job in a batch becomes available immediately after it is completed processing. The completion time of a job is defined to be the moment when it is available. The goal is to minimize the makespan of agent $ A $ and the maximum lateness of agent $ B $ simultaneously. For the compatible model with batch availability, an $ O(n_A+n_B^2\\\\log n_B) $-time algorithm is presented which improves the existing $ O(n_A+n_B^4\\\\log n_B) $-time algorithm. A slight modification of the algorithm solves the incompatible model with batch availability in $ O(n_A+n_B^2\\\\log n_B) $ time, which has the same time complexity as the existing algorithm. For the compatible model with item availability, the analysis shows that it is easy and admits an $ O(n_A+n_B\\\\log n_B) $-time algorithm. For the incompatible model with item availability, an $ O(n_A+n_B\\\\log n_B) $-time algorithm is also obtained which improves the existing $ O(n_A+n_B^2) $-time algorithm. The algorithms can generate all Pareto optimal points and find a corresponding Pareto optimal schedule for each Pareto optimal point.</p></abstract>\",\"PeriodicalId\":54732,\"journal\":{\"name\":\"Networks and Heterogeneous Media\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Networks and Heterogeneous Media\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/nhm.2023073\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Networks and Heterogeneous Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/nhm.2023073","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Algorithms for two-agent unbounded serial-batch scheduling with makespan and maximum lateness objectives
We study the problem of non-preemptively scheduling jobs from two agents on an unbounded serial-batch machine. Agents $ A $ and $ B $ have $ n_A $ and $ n_B $ jobs. The machine can process any number of jobs sequentially as a batch, and the processing time of the batch is equal to the total processing time of the jobs in it. Each batch requires a setup time before it is processed. Compatibility means that the jobs from different agents can be processed in a common batch; Otherwise, the jobs from different agents are incompatible. Both the compatible and incompatible models are considered, under both the batch availability and item availability assumptions. Batch availability means that any job in a batch is not available until all the jobs in this batch are completed. Item availability means that a job in a batch becomes available immediately after it is completed processing. The completion time of a job is defined to be the moment when it is available. The goal is to minimize the makespan of agent $ A $ and the maximum lateness of agent $ B $ simultaneously. For the compatible model with batch availability, an $ O(n_A+n_B^2\log n_B) $-time algorithm is presented which improves the existing $ O(n_A+n_B^4\log n_B) $-time algorithm. A slight modification of the algorithm solves the incompatible model with batch availability in $ O(n_A+n_B^2\log n_B) $ time, which has the same time complexity as the existing algorithm. For the compatible model with item availability, the analysis shows that it is easy and admits an $ O(n_A+n_B\log n_B) $-time algorithm. For the incompatible model with item availability, an $ O(n_A+n_B\log n_B) $-time algorithm is also obtained which improves the existing $ O(n_A+n_B^2) $-time algorithm. The algorithms can generate all Pareto optimal points and find a corresponding Pareto optimal schedule for each Pareto optimal point.
期刊介绍:
NHM offers a strong combination of three features: Interdisciplinary character, specific focus, and deep mathematical content. Also, the journal aims to create a link between the discrete and the continuous communities, which distinguishes it from other journals with strong PDE orientation.
NHM publishes original contributions of high quality in networks, heterogeneous media and related fields. NHM is thus devoted to research work on complex media arising in mathematical, physical, engineering, socio-economical and bio-medical problems.