fire - yolo:用于fire的轻量级对象检测体系结构

IF 1.4 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE AI Communications Pub Date : 2023-10-13 DOI:10.3233/aic-230094
Ning Sun, Pengfei Shen, Xiaoling Ye, Yifei Chen, Xiping Cheng, Pingping Wang, Jie Min
{"title":"fire - yolo:用于fire的轻量级对象检测体系结构","authors":"Ning Sun, Pengfei Shen, Xiaoling Ye, Yifei Chen, Xiping Cheng, Pingping Wang, Jie Min","doi":"10.3233/aic-230094","DOIUrl":null,"url":null,"abstract":"Fire monitoring of fire-prone areas is essential, and in order to meet the requirements of edge deployment and the balance of fire recognition accuracy and speed, we design a lightweight fire recognition network, Conflagration-YOLO. Conflagration-YOLO is constructed by depthwise separable convolution and more attention to fire feature information extraction from a three-dimensional(3D) perspective, which improves the network feature extraction capability, achieves a balance of accuracy and speed, and reduces model parameters. In addition, a new activation function is used to improve the accuracy of fire recognition while minimizing the inference time of the network. All models are trained and validated on a custom fire dataset and fire inference is performed on the CPU. The mean Average Precision(mAP) of the proposed model reaches 80.92%, which has a great advantage compared with Faster R-CNN. Compared with YOLOv3-Tiny, the proposed model decreases the number of parameters by 5.71 M and improves the mAP by 6.67%. Compared with YOLOv4-Tiny, the number of parameters decreases by 3.54 M, mAP increases by 8.47%, and inference time decreases by 62.59 ms. Compared with YOLOv5s, the difference in the number of parameters is nearly twice reduced by 4.45 M and the inference time is reduced by 41.87 ms. Compared with YOLOX-Tiny, the number of parameters decreases by 2.5 M, mAP increases by 0.7%, and inference time decreases by 102.49 ms. Compared with YOLOv7, the number of parameters decreases significantly and the balance of accuracy and speed is achieved. Compared with YOLOv7-Tiny, the number of parameters decreases by 3.64 M, mAP increases by 0.5%, and inference time decreases by 15.65 ms. The experiment verifies the superiority and effectiveness of Conflagration-YOLO compared to the state-of-the-art (SOTA) network model. Furthermore, our proposed model and its dimensional variants can be applied to computer vision downstream target detection tasks in other scenarios as required.","PeriodicalId":50835,"journal":{"name":"AI Communications","volume":"29 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conflagration-YOLO: a lightweight object detection architecture for conflagration\",\"authors\":\"Ning Sun, Pengfei Shen, Xiaoling Ye, Yifei Chen, Xiping Cheng, Pingping Wang, Jie Min\",\"doi\":\"10.3233/aic-230094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fire monitoring of fire-prone areas is essential, and in order to meet the requirements of edge deployment and the balance of fire recognition accuracy and speed, we design a lightweight fire recognition network, Conflagration-YOLO. Conflagration-YOLO is constructed by depthwise separable convolution and more attention to fire feature information extraction from a three-dimensional(3D) perspective, which improves the network feature extraction capability, achieves a balance of accuracy and speed, and reduces model parameters. In addition, a new activation function is used to improve the accuracy of fire recognition while minimizing the inference time of the network. All models are trained and validated on a custom fire dataset and fire inference is performed on the CPU. The mean Average Precision(mAP) of the proposed model reaches 80.92%, which has a great advantage compared with Faster R-CNN. Compared with YOLOv3-Tiny, the proposed model decreases the number of parameters by 5.71 M and improves the mAP by 6.67%. Compared with YOLOv4-Tiny, the number of parameters decreases by 3.54 M, mAP increases by 8.47%, and inference time decreases by 62.59 ms. Compared with YOLOv5s, the difference in the number of parameters is nearly twice reduced by 4.45 M and the inference time is reduced by 41.87 ms. Compared with YOLOX-Tiny, the number of parameters decreases by 2.5 M, mAP increases by 0.7%, and inference time decreases by 102.49 ms. Compared with YOLOv7, the number of parameters decreases significantly and the balance of accuracy and speed is achieved. Compared with YOLOv7-Tiny, the number of parameters decreases by 3.64 M, mAP increases by 0.5%, and inference time decreases by 15.65 ms. The experiment verifies the superiority and effectiveness of Conflagration-YOLO compared to the state-of-the-art (SOTA) network model. Furthermore, our proposed model and its dimensional variants can be applied to computer vision downstream target detection tasks in other scenarios as required.\",\"PeriodicalId\":50835,\"journal\":{\"name\":\"AI Communications\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/aic-230094\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/aic-230094","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

火灾易发区域的火灾监测是必不可少的,为了满足边缘部署的要求以及火灾识别精度和速度的平衡,我们设计了一个轻量级的火灾识别网络——conflaga - yolo。fire - yolo是通过深度可分卷积构建的,更注重从三维角度提取火灾特征信息,提高了网络特征提取能力,实现了准确性和速度的平衡,减少了模型参数。此外,采用了新的激活函数,提高了火灾识别的精度,同时使网络的推理时间最小化。所有模型都在自定义火灾数据集上进行训练和验证,并在CPU上执行火灾推理。该模型的平均精度(mAP)达到80.92%,与Faster R-CNN相比具有很大的优势。与YOLOv3-Tiny模型相比,该模型的参数个数减少了5.71 M, mAP提高了6.67%。与YOLOv4-Tiny相比,参数数量减少了3.54 M, mAP增加了8.47%,推理时间减少了62.59 ms。与YOLOv5s相比,参数数量的差异减少了近2倍,减少了4.45 M,推理时间减少了41.87 ms。与YOLOX-Tiny相比,参数数量减少2.5 M, mAP增加0.7%,推理时间减少102.49 ms。与YOLOv7相比,参数数量明显减少,实现了精度和速度的平衡。与YOLOv7-Tiny相比,参数数量减少了3.64 M, mAP增加了0.5%,推理时间减少了15.65 ms。实验验证了fire - yolo模型相对于最先进的SOTA网络模型的优越性和有效性。此外,我们提出的模型及其维度变体可以根据需要应用于其他场景的计算机视觉下游目标检测任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Conflagration-YOLO: a lightweight object detection architecture for conflagration
Fire monitoring of fire-prone areas is essential, and in order to meet the requirements of edge deployment and the balance of fire recognition accuracy and speed, we design a lightweight fire recognition network, Conflagration-YOLO. Conflagration-YOLO is constructed by depthwise separable convolution and more attention to fire feature information extraction from a three-dimensional(3D) perspective, which improves the network feature extraction capability, achieves a balance of accuracy and speed, and reduces model parameters. In addition, a new activation function is used to improve the accuracy of fire recognition while minimizing the inference time of the network. All models are trained and validated on a custom fire dataset and fire inference is performed on the CPU. The mean Average Precision(mAP) of the proposed model reaches 80.92%, which has a great advantage compared with Faster R-CNN. Compared with YOLOv3-Tiny, the proposed model decreases the number of parameters by 5.71 M and improves the mAP by 6.67%. Compared with YOLOv4-Tiny, the number of parameters decreases by 3.54 M, mAP increases by 8.47%, and inference time decreases by 62.59 ms. Compared with YOLOv5s, the difference in the number of parameters is nearly twice reduced by 4.45 M and the inference time is reduced by 41.87 ms. Compared with YOLOX-Tiny, the number of parameters decreases by 2.5 M, mAP increases by 0.7%, and inference time decreases by 102.49 ms. Compared with YOLOv7, the number of parameters decreases significantly and the balance of accuracy and speed is achieved. Compared with YOLOv7-Tiny, the number of parameters decreases by 3.64 M, mAP increases by 0.5%, and inference time decreases by 15.65 ms. The experiment verifies the superiority and effectiveness of Conflagration-YOLO compared to the state-of-the-art (SOTA) network model. Furthermore, our proposed model and its dimensional variants can be applied to computer vision downstream target detection tasks in other scenarios as required.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AI Communications
AI Communications 工程技术-计算机:人工智能
CiteScore
2.30
自引率
12.50%
发文量
34
审稿时长
4.5 months
期刊介绍: AI Communications is a journal on artificial intelligence (AI) which has a close relationship to EurAI (European Association for Artificial Intelligence, formerly ECCAI). It covers the whole AI community: Scientific institutions as well as commercial and industrial companies. AI Communications aims to enhance contacts and information exchange between AI researchers and developers, and to provide supranational information to those concerned with AI and advanced information processing. AI Communications publishes refereed articles concerning scientific and technical AI procedures, provided they are of sufficient interest to a large readership of both scientific and practical background. In addition it contains high-level background material, both at the technical level as well as the level of opinions, policies and news.
期刊最新文献
Multi-feature fusion dehazing based on CycleGAN Spatio-temporal deep learning framework for pedestrian intention prediction in urban traffic scenes Open-world object detection: A solution based on reselection mechanism and feature disentanglement MantaRay-ProM: An efficient process model discovery algorithm Token-modification adversarial attacks for natural language processing: A survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1