DW:用于3D物体检测的检测权重

IF 1.4 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE AI Communications Pub Date : 2023-10-13 DOI:10.3233/aic-230008
Zhi Huang
{"title":"DW:用于3D物体检测的检测权重","authors":"Zhi Huang","doi":"10.3233/aic-230008","DOIUrl":null,"url":null,"abstract":"It is a generic paradigm to treat all samples equally in 3D object detection. Although some works focus on discriminating samples in the training process of object detectors, the issue of whether a sample detects its target GT (Ground Truth) during training process has never been studied. In this work, we first point out that discriminating the samples that detect their target GT and the samples that don’t detect their target GT is beneficial to improve the performance measured in terms of mAP (mean Average Precision). Then we propose a novel approach name as DW (Detected Weight). The proposed approach dynamically calculates and assigns different weights to detected and undetected samples, which suppresses the former and promotes the latter. The approach is simple, low-calculation and can be integrated with available weight approaches. Further, it can be applied to almost 3D detectors, even 2D detectors because it is nothing to do with network structures. We evaluate the proposed approach with six state-of-the-art 3D detectors on two datasets. The experiment results show that the proposed approach improves mAP significantly.","PeriodicalId":50835,"journal":{"name":"AI Communications","volume":"15 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DW: Detected weight for 3D object detection\",\"authors\":\"Zhi Huang\",\"doi\":\"10.3233/aic-230008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is a generic paradigm to treat all samples equally in 3D object detection. Although some works focus on discriminating samples in the training process of object detectors, the issue of whether a sample detects its target GT (Ground Truth) during training process has never been studied. In this work, we first point out that discriminating the samples that detect their target GT and the samples that don’t detect their target GT is beneficial to improve the performance measured in terms of mAP (mean Average Precision). Then we propose a novel approach name as DW (Detected Weight). The proposed approach dynamically calculates and assigns different weights to detected and undetected samples, which suppresses the former and promotes the latter. The approach is simple, low-calculation and can be integrated with available weight approaches. Further, it can be applied to almost 3D detectors, even 2D detectors because it is nothing to do with network structures. We evaluate the proposed approach with six state-of-the-art 3D detectors on two datasets. The experiment results show that the proposed approach improves mAP significantly.\",\"PeriodicalId\":50835,\"journal\":{\"name\":\"AI Communications\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/aic-230008\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/aic-230008","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在三维物体检测中,平等对待所有样本是一种通用范例。虽然一些研究集中在目标检测器的训练过程中对样本进行判别,但样本在训练过程中是否检测到目标GT (Ground Truth)的问题却从未被研究过。在这项工作中,我们首先指出,区分检测到目标GT的样本和未检测到目标GT的样本有利于提高mAP (mean Average Precision)的性能。然后,我们提出了一种新的方法,称为DW (detection Weight)。该方法对检测到的样本和未检测到的样本动态计算和分配不同的权重,抑制了检测到的样本,促进了未检测到的样本。该方法简单,计算量小,可与现有的权重方法相结合。此外,它几乎可以应用于三维探测器,甚至二维探测器,因为它与网络结构无关。我们用六个最先进的3D探测器在两个数据集上评估了所提出的方法。实验结果表明,该方法显著提高了mAP的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DW: Detected weight for 3D object detection
It is a generic paradigm to treat all samples equally in 3D object detection. Although some works focus on discriminating samples in the training process of object detectors, the issue of whether a sample detects its target GT (Ground Truth) during training process has never been studied. In this work, we first point out that discriminating the samples that detect their target GT and the samples that don’t detect their target GT is beneficial to improve the performance measured in terms of mAP (mean Average Precision). Then we propose a novel approach name as DW (Detected Weight). The proposed approach dynamically calculates and assigns different weights to detected and undetected samples, which suppresses the former and promotes the latter. The approach is simple, low-calculation and can be integrated with available weight approaches. Further, it can be applied to almost 3D detectors, even 2D detectors because it is nothing to do with network structures. We evaluate the proposed approach with six state-of-the-art 3D detectors on two datasets. The experiment results show that the proposed approach improves mAP significantly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AI Communications
AI Communications 工程技术-计算机:人工智能
CiteScore
2.30
自引率
12.50%
发文量
34
审稿时长
4.5 months
期刊介绍: AI Communications is a journal on artificial intelligence (AI) which has a close relationship to EurAI (European Association for Artificial Intelligence, formerly ECCAI). It covers the whole AI community: Scientific institutions as well as commercial and industrial companies. AI Communications aims to enhance contacts and information exchange between AI researchers and developers, and to provide supranational information to those concerned with AI and advanced information processing. AI Communications publishes refereed articles concerning scientific and technical AI procedures, provided they are of sufficient interest to a large readership of both scientific and practical background. In addition it contains high-level background material, both at the technical level as well as the level of opinions, policies and news.
期刊最新文献
Multi-feature fusion dehazing based on CycleGAN Spatio-temporal deep learning framework for pedestrian intention prediction in urban traffic scenes Open-world object detection: A solution based on reselection mechanism and feature disentanglement MantaRay-ProM: An efficient process model discovery algorithm Token-modification adversarial attacks for natural language processing: A survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1