{"title":"电位控制边界润滑研究进展","authors":"Shaowei Li, Chenxu Liu, Wang He, Jie Zhang, Xiaoxi Qiao, Jiang Li, Dong Xiang, Gao Qian, Pengpeng Bai, Yonggang Meng, Yu Tian","doi":"10.3390/lubricants11110467","DOIUrl":null,"url":null,"abstract":"Tribotronics represents the modulation of friction via an external electric potential, a field with promising ramifications for intelligent devices, precision manufacturing, and biomedical applications. A profound elucidation of mechanisms that allow for potential-controlled friction is foundational to further research in this tribotronic domain. This article provides a comprehensive review of the research progress in electro-controlled friction over the past few decades, approached from the perspective of the boundary lubrication film at the friction interface, a direct influencer of electro-controlled friction performance. The mechanisms of potential-controlled friction are categorized into three distinct classifications, contingent on the formation mode of the boundary lubrication film: potential-induced interfacial redox reactions, interfacial physical adsorption, and interfacial phase structure transformations. Furthermore, an outlook on the application prospects of electro-controlled friction is provided. Finally, several research directions worth exploring in the field of electro-controlled friction are proposed. The authors hope that this article will further promote the application of electro-controlled friction technology in engineering and provide intellectual inspiration for related researchers.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":"108 9","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Review of Electric Potential-Controlled Boundary Lubrication\",\"authors\":\"Shaowei Li, Chenxu Liu, Wang He, Jie Zhang, Xiaoxi Qiao, Jiang Li, Dong Xiang, Gao Qian, Pengpeng Bai, Yonggang Meng, Yu Tian\",\"doi\":\"10.3390/lubricants11110467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tribotronics represents the modulation of friction via an external electric potential, a field with promising ramifications for intelligent devices, precision manufacturing, and biomedical applications. A profound elucidation of mechanisms that allow for potential-controlled friction is foundational to further research in this tribotronic domain. This article provides a comprehensive review of the research progress in electro-controlled friction over the past few decades, approached from the perspective of the boundary lubrication film at the friction interface, a direct influencer of electro-controlled friction performance. The mechanisms of potential-controlled friction are categorized into three distinct classifications, contingent on the formation mode of the boundary lubrication film: potential-induced interfacial redox reactions, interfacial physical adsorption, and interfacial phase structure transformations. Furthermore, an outlook on the application prospects of electro-controlled friction is provided. Finally, several research directions worth exploring in the field of electro-controlled friction are proposed. The authors hope that this article will further promote the application of electro-controlled friction technology in engineering and provide intellectual inspiration for related researchers.\",\"PeriodicalId\":18135,\"journal\":{\"name\":\"Lubricants\",\"volume\":\"108 9\",\"pages\":\"0\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubricants\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/lubricants11110467\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/lubricants11110467","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A Review of Electric Potential-Controlled Boundary Lubrication
Tribotronics represents the modulation of friction via an external electric potential, a field with promising ramifications for intelligent devices, precision manufacturing, and biomedical applications. A profound elucidation of mechanisms that allow for potential-controlled friction is foundational to further research in this tribotronic domain. This article provides a comprehensive review of the research progress in electro-controlled friction over the past few decades, approached from the perspective of the boundary lubrication film at the friction interface, a direct influencer of electro-controlled friction performance. The mechanisms of potential-controlled friction are categorized into three distinct classifications, contingent on the formation mode of the boundary lubrication film: potential-induced interfacial redox reactions, interfacial physical adsorption, and interfacial phase structure transformations. Furthermore, an outlook on the application prospects of electro-controlled friction is provided. Finally, several research directions worth exploring in the field of electro-controlled friction are proposed. The authors hope that this article will further promote the application of electro-controlled friction technology in engineering and provide intellectual inspiration for related researchers.
期刊介绍:
This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding