{"title":"宽高比对空腔内纳米流体流动和热影响的细致研究:基于有限差分的计算","authors":"Ijaz Ahmad, Shafee Ahmad, Afraz Hussain Majeed, Tarik Lamoudan, Imran Siddique","doi":"10.1142/s0217984924500933","DOIUrl":null,"url":null,"abstract":"The phenomenon of natural convection in rectangular cavities of different aspect ratios is considered. The water is considered a base fluid associated with copper nanoparticles. The flow is induced only due to buoyancy force that arises by heating the right side of the cavity. The left side is set cold while the other walls are assumed to be at zero flux temperature. The governing equations of the present communication are simulated by the finite difference method. This study explores the impacts of Rayleigh number (Ra), Prandtl number (Pr), nanoparticles volume fraction ([Formula: see text]), and aspect ratio (A). Different combinations of these parameters are investigated. Compared to other parameters, Rayleigh number (10[Formula: see text]), aspect ratio ([Formula: see text]), and volume fraction of nanoparticles ([Formula: see text]), A is found more effective on the flow field and isotherms. Regression curves are determined for the mean Nusselt number (Nu avg ) as a function of Ra for different cases. It is found that Nu avg more precisely fits the exponential function. Also, it is found that Nu avg decreases as the values of A increase. But, [Formula: see text], shows the opposite behavior. It is noticed that when the A of the cavity grows, so does the mean heat transfer Nu. With rising Ra, the local heat transfer Nu L decreases and the heat transfer rises. In the case of the square cavity, the regression coefficient for Nu avg is found to be 0.3673 and 0.2514 for an exponential function.","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":"55 8","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A meticulous study of aspect ratio impacts on flow and heat of nanofluid in a cavity: Finite difference-based computations\",\"authors\":\"Ijaz Ahmad, Shafee Ahmad, Afraz Hussain Majeed, Tarik Lamoudan, Imran Siddique\",\"doi\":\"10.1142/s0217984924500933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The phenomenon of natural convection in rectangular cavities of different aspect ratios is considered. The water is considered a base fluid associated with copper nanoparticles. The flow is induced only due to buoyancy force that arises by heating the right side of the cavity. The left side is set cold while the other walls are assumed to be at zero flux temperature. The governing equations of the present communication are simulated by the finite difference method. This study explores the impacts of Rayleigh number (Ra), Prandtl number (Pr), nanoparticles volume fraction ([Formula: see text]), and aspect ratio (A). Different combinations of these parameters are investigated. Compared to other parameters, Rayleigh number (10[Formula: see text]), aspect ratio ([Formula: see text]), and volume fraction of nanoparticles ([Formula: see text]), A is found more effective on the flow field and isotherms. Regression curves are determined for the mean Nusselt number (Nu avg ) as a function of Ra for different cases. It is found that Nu avg more precisely fits the exponential function. Also, it is found that Nu avg decreases as the values of A increase. But, [Formula: see text], shows the opposite behavior. It is noticed that when the A of the cavity grows, so does the mean heat transfer Nu. With rising Ra, the local heat transfer Nu L decreases and the heat transfer rises. In the case of the square cavity, the regression coefficient for Nu avg is found to be 0.3673 and 0.2514 for an exponential function.\",\"PeriodicalId\":18570,\"journal\":{\"name\":\"Modern Physics Letters B\",\"volume\":\"55 8\",\"pages\":\"0\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Physics Letters B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217984924500933\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0217984924500933","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
A meticulous study of aspect ratio impacts on flow and heat of nanofluid in a cavity: Finite difference-based computations
The phenomenon of natural convection in rectangular cavities of different aspect ratios is considered. The water is considered a base fluid associated with copper nanoparticles. The flow is induced only due to buoyancy force that arises by heating the right side of the cavity. The left side is set cold while the other walls are assumed to be at zero flux temperature. The governing equations of the present communication are simulated by the finite difference method. This study explores the impacts of Rayleigh number (Ra), Prandtl number (Pr), nanoparticles volume fraction ([Formula: see text]), and aspect ratio (A). Different combinations of these parameters are investigated. Compared to other parameters, Rayleigh number (10[Formula: see text]), aspect ratio ([Formula: see text]), and volume fraction of nanoparticles ([Formula: see text]), A is found more effective on the flow field and isotherms. Regression curves are determined for the mean Nusselt number (Nu avg ) as a function of Ra for different cases. It is found that Nu avg more precisely fits the exponential function. Also, it is found that Nu avg decreases as the values of A increase. But, [Formula: see text], shows the opposite behavior. It is noticed that when the A of the cavity grows, so does the mean heat transfer Nu. With rising Ra, the local heat transfer Nu L decreases and the heat transfer rises. In the case of the square cavity, the regression coefficient for Nu avg is found to be 0.3673 and 0.2514 for an exponential function.
期刊介绍:
MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.