{"title":"使用扬声器嵌入的自组织麦克风聚类的鲁棒性:在现实和具有挑战性的场景下的评估","authors":"Stijn Kindt, Jenthe Thienpondt, Luca Becker, Nilesh Madhu","doi":"10.1186/s13636-023-00310-w","DOIUrl":null,"url":null,"abstract":"Abstract Speaker embeddings, from the ECAPA-TDNN speaker verification network, were recently introduced as features for the task of clustering microphones in ad hoc arrays. Our previous work demonstrated that, in comparison to signal-based Mod-MFCC features, using speaker embeddings yielded a more robust and logical clustering of the microphones around the sources of interest. This work aims to further establish speaker embeddings as a robust feature for ad hoc microphone clustering by addressing open and additional questions of practical interest, arising from our prior work. Specifically, whereas our initial work made use of simulated data based on shoe-box acoustics models, we now present a more thorough analysis in more realistic settings. Furthermore, we investigate additional important considerations such as the choice of the distance metric used in the fuzzy C-means clustering; the minimal time range across which data need to be aggregated to obtain robust clusters; and the performance of the features in increasingly more challenging situations, and with multiple speakers. We also contrast the results on the basis of several metrics for quantifying the quality of such ad hoc clusters. Results indicate that the speaker embeddings are robust to short inference times, and deliver logical and useful clusters, even when the sources are very close to each other.","PeriodicalId":49309,"journal":{"name":"Journal on Audio Speech and Music Processing","volume":"15 5","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robustness of ad hoc microphone clustering using speaker embeddings: evaluation under realistic and challenging scenarios\",\"authors\":\"Stijn Kindt, Jenthe Thienpondt, Luca Becker, Nilesh Madhu\",\"doi\":\"10.1186/s13636-023-00310-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Speaker embeddings, from the ECAPA-TDNN speaker verification network, were recently introduced as features for the task of clustering microphones in ad hoc arrays. Our previous work demonstrated that, in comparison to signal-based Mod-MFCC features, using speaker embeddings yielded a more robust and logical clustering of the microphones around the sources of interest. This work aims to further establish speaker embeddings as a robust feature for ad hoc microphone clustering by addressing open and additional questions of practical interest, arising from our prior work. Specifically, whereas our initial work made use of simulated data based on shoe-box acoustics models, we now present a more thorough analysis in more realistic settings. Furthermore, we investigate additional important considerations such as the choice of the distance metric used in the fuzzy C-means clustering; the minimal time range across which data need to be aggregated to obtain robust clusters; and the performance of the features in increasingly more challenging situations, and with multiple speakers. We also contrast the results on the basis of several metrics for quantifying the quality of such ad hoc clusters. Results indicate that the speaker embeddings are robust to short inference times, and deliver logical and useful clusters, even when the sources are very close to each other.\",\"PeriodicalId\":49309,\"journal\":{\"name\":\"Journal on Audio Speech and Music Processing\",\"volume\":\"15 5\",\"pages\":\"0\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal on Audio Speech and Music Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13636-023-00310-w\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal on Audio Speech and Music Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13636-023-00310-w","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robustness of ad hoc microphone clustering using speaker embeddings: evaluation under realistic and challenging scenarios
Abstract Speaker embeddings, from the ECAPA-TDNN speaker verification network, were recently introduced as features for the task of clustering microphones in ad hoc arrays. Our previous work demonstrated that, in comparison to signal-based Mod-MFCC features, using speaker embeddings yielded a more robust and logical clustering of the microphones around the sources of interest. This work aims to further establish speaker embeddings as a robust feature for ad hoc microphone clustering by addressing open and additional questions of practical interest, arising from our prior work. Specifically, whereas our initial work made use of simulated data based on shoe-box acoustics models, we now present a more thorough analysis in more realistic settings. Furthermore, we investigate additional important considerations such as the choice of the distance metric used in the fuzzy C-means clustering; the minimal time range across which data need to be aggregated to obtain robust clusters; and the performance of the features in increasingly more challenging situations, and with multiple speakers. We also contrast the results on the basis of several metrics for quantifying the quality of such ad hoc clusters. Results indicate that the speaker embeddings are robust to short inference times, and deliver logical and useful clusters, even when the sources are very close to each other.
期刊介绍:
The aim of “EURASIP Journal on Audio, Speech, and Music Processing” is to bring together researchers, scientists and engineers working on the theory and applications of the processing of various audio signals, with a specific focus on speech and music. EURASIP Journal on Audio, Speech, and Music Processing will be an interdisciplinary journal for the dissemination of all basic and applied aspects of speech communication and audio processes.