用机器学习增强SDN网络入侵恢复:一种创新方法

Mohamed Hammad, Nabil Hewahi, Wael Elmedany
{"title":"用机器学习增强SDN网络入侵恢复:一种创新方法","authors":"Mohamed Hammad, Nabil Hewahi, Wael Elmedany","doi":"10.1080/25765299.2023.2261219","DOIUrl":null,"url":null,"abstract":"In modern network environments, the swift recovery of network flow intrusions poses a substantial challenge. Particularly in the context of Software-Defined Networks (SDN), addressing this challenge necessitates the strategic selection of backup paths based on traffic patterns. In response to this critical issue, our paper introduces a groundbreaking approach known as Machine Learning-based Network Intrusion Recovery (MLBNIR) for enhancing intrusion recovery in SDN. We leverage a dedicated SDN dataset to train a flow-based Machine Learning (ML) model, enabling a deeper understanding of traffic dynamics within the SDN framework. Our study, presented in this paper, reveals that the MLBNIR approach significantly reduces intrusion recovery time by up to 90% and concurrently increases network bandwidth consumption by up to 57% when compared to existing methods reviewed in the literature.","PeriodicalId":37239,"journal":{"name":"Arab Journal of Basic and Applied Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Network Intrusion Recovery in SDN with machine learning: an innovative approach\",\"authors\":\"Mohamed Hammad, Nabil Hewahi, Wael Elmedany\",\"doi\":\"10.1080/25765299.2023.2261219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In modern network environments, the swift recovery of network flow intrusions poses a substantial challenge. Particularly in the context of Software-Defined Networks (SDN), addressing this challenge necessitates the strategic selection of backup paths based on traffic patterns. In response to this critical issue, our paper introduces a groundbreaking approach known as Machine Learning-based Network Intrusion Recovery (MLBNIR) for enhancing intrusion recovery in SDN. We leverage a dedicated SDN dataset to train a flow-based Machine Learning (ML) model, enabling a deeper understanding of traffic dynamics within the SDN framework. Our study, presented in this paper, reveals that the MLBNIR approach significantly reduces intrusion recovery time by up to 90% and concurrently increases network bandwidth consumption by up to 57% when compared to existing methods reviewed in the literature.\",\"PeriodicalId\":37239,\"journal\":{\"name\":\"Arab Journal of Basic and Applied Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arab Journal of Basic and Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/25765299.2023.2261219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arab Journal of Basic and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25765299.2023.2261219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在现代网络环境中,网络流入侵的快速恢复提出了巨大的挑战。特别是在软件定义网络(SDN)的背景下,解决这一挑战需要根据流量模式战略性地选择备份路径。针对这一关键问题,本文介绍了一种突破性的方法,称为基于机器学习的网络入侵恢复(MLBNIR),用于增强SDN中的入侵恢复。我们利用专用的SDN数据集来训练基于流量的机器学习(ML)模型,从而更深入地了解SDN框架内的流量动态。我们在本文中提出的研究表明,与文献中回顾的现有方法相比,MLBNIR方法显着减少了入侵恢复时间高达90%,同时增加了网络带宽消耗高达57%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing Network Intrusion Recovery in SDN with machine learning: an innovative approach
In modern network environments, the swift recovery of network flow intrusions poses a substantial challenge. Particularly in the context of Software-Defined Networks (SDN), addressing this challenge necessitates the strategic selection of backup paths based on traffic patterns. In response to this critical issue, our paper introduces a groundbreaking approach known as Machine Learning-based Network Intrusion Recovery (MLBNIR) for enhancing intrusion recovery in SDN. We leverage a dedicated SDN dataset to train a flow-based Machine Learning (ML) model, enabling a deeper understanding of traffic dynamics within the SDN framework. Our study, presented in this paper, reveals that the MLBNIR approach significantly reduces intrusion recovery time by up to 90% and concurrently increases network bandwidth consumption by up to 57% when compared to existing methods reviewed in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arab Journal of Basic and Applied Sciences
Arab Journal of Basic and Applied Sciences Mathematics-Mathematics (all)
CiteScore
5.80
自引率
0.00%
发文量
31
审稿时长
36 weeks
期刊最新文献
Stability exploration in fractional h-difference equations with incommensurate orders Control strategy for renewable energy driven self-excited induction generator Certain results associated with q -Agarwal fractional integral operators and a q -class of special functions The real fixed points of two-parameter family of functions bx−1xm Dynamical and sensitivity analysis for fractional Kundu–Eckhaus system to produce solitary wave solutions via new mapping approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1