{"title":"磁约束作用下改进型球形圆柱ECP的除尘性能","authors":"Jianping Zhang, Zhuo Chen, Qinggang Si, Pengju Zhang, Dawen Zhao, Zhiwei Zhang, Baodong Ren","doi":"10.1080/02726351.2023.2260993","DOIUrl":null,"url":null,"abstract":"AbstractIn order to further improve the trapping effect of fine particles, an improved electrostatic cyclone precipitator (ECP) was proposed. The electromagnetic dust-removal mechanism of spherical cylindrical ECP was revealed, and the influences of flue gas velocity on the dust-removal effect of fine particles with and without magnetic confinement effect were discussed. The results show that the overall efficiency curve of fine particles shows a ' hump ' type with the change of flue gas velocity, and the increase of magnetic induction intensity promotes the hump to move to the low flue gas velocity area. Increasing magnetic induction intensity can improve the trapping performance of spherical cylindrical magnetically constrained ECP, and the improvement effect weakens gradually when the same amplitude increases.Keywords: Spherical cylindrical ECPmagnetic confinement effectfine particlesdust-removal performancehump AcknowledgmentsThis work is sponsored by National Natural Science Foundation of China (12172228, 11572187), Natural Science Foundation of Shanghai (22ZR1444400), the Program of Foundation of Science and Technology Commission of Shanghai Municipality (22dz1206005, 22dz1204202), and Shanghai Professional Technical Service Platform for Intelligent Operation and Maintenance of Renewable Energy (22DZ2291800).Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementDue to the sensitive nature of the questions asked in this study, raw data would remain confidential and would not be shared.Additional informationFundingThis work is sponsored by National Natural Science Foundation of China (12172228, 11572187), Natural Science Foundation of Shanghai (22ZR1444400), the Program of Foundation of Science and Technology Commission of Shanghai Municipality (22dz1206005, 22dz1204202), and Shanghai Professional Technical Service Platform for Intelligent Operation and Maintenance of Renewable Energy (22DZ2291800).","PeriodicalId":19742,"journal":{"name":"Particulate Science and Technology","volume":"100 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dust-removal performance of an improved spherical cylindrical ECP under magnetic confinement effect\",\"authors\":\"Jianping Zhang, Zhuo Chen, Qinggang Si, Pengju Zhang, Dawen Zhao, Zhiwei Zhang, Baodong Ren\",\"doi\":\"10.1080/02726351.2023.2260993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractIn order to further improve the trapping effect of fine particles, an improved electrostatic cyclone precipitator (ECP) was proposed. The electromagnetic dust-removal mechanism of spherical cylindrical ECP was revealed, and the influences of flue gas velocity on the dust-removal effect of fine particles with and without magnetic confinement effect were discussed. The results show that the overall efficiency curve of fine particles shows a ' hump ' type with the change of flue gas velocity, and the increase of magnetic induction intensity promotes the hump to move to the low flue gas velocity area. Increasing magnetic induction intensity can improve the trapping performance of spherical cylindrical magnetically constrained ECP, and the improvement effect weakens gradually when the same amplitude increases.Keywords: Spherical cylindrical ECPmagnetic confinement effectfine particlesdust-removal performancehump AcknowledgmentsThis work is sponsored by National Natural Science Foundation of China (12172228, 11572187), Natural Science Foundation of Shanghai (22ZR1444400), the Program of Foundation of Science and Technology Commission of Shanghai Municipality (22dz1206005, 22dz1204202), and Shanghai Professional Technical Service Platform for Intelligent Operation and Maintenance of Renewable Energy (22DZ2291800).Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementDue to the sensitive nature of the questions asked in this study, raw data would remain confidential and would not be shared.Additional informationFundingThis work is sponsored by National Natural Science Foundation of China (12172228, 11572187), Natural Science Foundation of Shanghai (22ZR1444400), the Program of Foundation of Science and Technology Commission of Shanghai Municipality (22dz1206005, 22dz1204202), and Shanghai Professional Technical Service Platform for Intelligent Operation and Maintenance of Renewable Energy (22DZ2291800).\",\"PeriodicalId\":19742,\"journal\":{\"name\":\"Particulate Science and Technology\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particulate Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02726351.2023.2260993\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particulate Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02726351.2023.2260993","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Dust-removal performance of an improved spherical cylindrical ECP under magnetic confinement effect
AbstractIn order to further improve the trapping effect of fine particles, an improved electrostatic cyclone precipitator (ECP) was proposed. The electromagnetic dust-removal mechanism of spherical cylindrical ECP was revealed, and the influences of flue gas velocity on the dust-removal effect of fine particles with and without magnetic confinement effect were discussed. The results show that the overall efficiency curve of fine particles shows a ' hump ' type with the change of flue gas velocity, and the increase of magnetic induction intensity promotes the hump to move to the low flue gas velocity area. Increasing magnetic induction intensity can improve the trapping performance of spherical cylindrical magnetically constrained ECP, and the improvement effect weakens gradually when the same amplitude increases.Keywords: Spherical cylindrical ECPmagnetic confinement effectfine particlesdust-removal performancehump AcknowledgmentsThis work is sponsored by National Natural Science Foundation of China (12172228, 11572187), Natural Science Foundation of Shanghai (22ZR1444400), the Program of Foundation of Science and Technology Commission of Shanghai Municipality (22dz1206005, 22dz1204202), and Shanghai Professional Technical Service Platform for Intelligent Operation and Maintenance of Renewable Energy (22DZ2291800).Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementDue to the sensitive nature of the questions asked in this study, raw data would remain confidential and would not be shared.Additional informationFundingThis work is sponsored by National Natural Science Foundation of China (12172228, 11572187), Natural Science Foundation of Shanghai (22ZR1444400), the Program of Foundation of Science and Technology Commission of Shanghai Municipality (22dz1206005, 22dz1204202), and Shanghai Professional Technical Service Platform for Intelligent Operation and Maintenance of Renewable Energy (22DZ2291800).
期刊介绍:
Particulate Science and Technology, an interdisciplinary journal, publishes papers on both fundamental and applied science and technology related to particles and particle systems in size scales from nanometers to millimeters. The journal''s primary focus is to report emerging technologies and advances in different fields of engineering, energy, biomaterials, and pharmaceutical science involving particles, and to bring institutional researchers closer to professionals in industries.
Particulate Science and Technology invites articles reporting original contributions and review papers, in particular critical reviews, that are relevant and timely to the emerging and growing fields of particle and powder technology.