通过铑催化进行电化学 C7-Indole 烯化反应

IF 2.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Israel Journal of Chemistry Pub Date : 2023-09-25 DOI:10.1002/ijch.202300103
Agnese Zangarelli, Binbin Yuan, Prof. Dr. Lutz Ackermann
{"title":"通过铑催化进行电化学 C7-Indole 烯化反应","authors":"Agnese Zangarelli,&nbsp;Binbin Yuan,&nbsp;Prof. Dr. Lutz Ackermann","doi":"10.1002/ijch.202300103","DOIUrl":null,"url":null,"abstract":"<p>Indole derivatives are fundamental structural units in many bioactive compounds and molecular materials. The site-selective C7-functionalization of these moieties has been proven to be extremely challenging due to the inherent reactivity of the C2- and C3-positions. Herein, we report the first electro-C7-alkenylation of indoles. This novel and sustainable methodology provides highly exclusive access to the C7-position devoid of often toxic and expensive chemical oxidants. Moreover, an array of substrates was successfully alkenylated at the C7-position, and versatile product diversification was achieved.</p>","PeriodicalId":14686,"journal":{"name":"Israel Journal of Chemistry","volume":"64 1-2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ijch.202300103","citationCount":"0","resultStr":"{\"title\":\"Electrochemical C7-Indole Alkenylation via Rhodium Catalysis\",\"authors\":\"Agnese Zangarelli,&nbsp;Binbin Yuan,&nbsp;Prof. Dr. Lutz Ackermann\",\"doi\":\"10.1002/ijch.202300103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Indole derivatives are fundamental structural units in many bioactive compounds and molecular materials. The site-selective C7-functionalization of these moieties has been proven to be extremely challenging due to the inherent reactivity of the C2- and C3-positions. Herein, we report the first electro-C7-alkenylation of indoles. This novel and sustainable methodology provides highly exclusive access to the C7-position devoid of often toxic and expensive chemical oxidants. Moreover, an array of substrates was successfully alkenylated at the C7-position, and versatile product diversification was achieved.</p>\",\"PeriodicalId\":14686,\"journal\":{\"name\":\"Israel Journal of Chemistry\",\"volume\":\"64 1-2\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ijch.202300103\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ijch.202300103\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ijch.202300103","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

吲哚衍生物是许多生物活性化合物和分子材料的基本结构单元。由于 C2 和 C3 位的固有反应性,对这些分子进行 C7 位选择性官能化已被证明极具挑战性。在此,我们首次报道了吲哚的电-C7-烯基化反应。这种新颖且可持续的方法提供了对 C7 位的高度独占性访问,而无需使用通常有毒且昂贵的化学氧化剂。此外,我们还成功地在 C7 位对一系列底物进行了烯化,实现了产品的多样化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrochemical C7-Indole Alkenylation via Rhodium Catalysis

Indole derivatives are fundamental structural units in many bioactive compounds and molecular materials. The site-selective C7-functionalization of these moieties has been proven to be extremely challenging due to the inherent reactivity of the C2- and C3-positions. Herein, we report the first electro-C7-alkenylation of indoles. This novel and sustainable methodology provides highly exclusive access to the C7-position devoid of often toxic and expensive chemical oxidants. Moreover, an array of substrates was successfully alkenylated at the C7-position, and versatile product diversification was achieved.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Israel Journal of Chemistry
Israel Journal of Chemistry 化学-化学综合
CiteScore
6.20
自引率
0.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: The fledgling State of Israel began to publish its scientific activity in 1951 under the general heading of Bulletin of the Research Council of Israel, which quickly split into sections to accommodate various fields in the growing academic community. In 1963, the Bulletin ceased publication and independent journals were born, with Section A becoming the new Israel Journal of Chemistry. The Israel Journal of Chemistry is the official journal of the Israel Chemical Society. Effective from Volume 50 (2010) it is published by Wiley-VCH. The Israel Journal of Chemistry is an international and peer-reviewed publication forum for Special Issues on timely research topics in all fields of chemistry: from biochemistry through organic and inorganic chemistry to polymer, physical and theoretical chemistry, including all interdisciplinary topics. Each topical issue is edited by one or several Guest Editors and primarily contains invited Review articles. Communications and Full Papers may be published occasionally, if they fit with the quality standards of the journal. The publication language is English and the journal is published twelve times a year.
期刊最新文献
Cover Picture: (Isr. J. Chem. 8-9/2024) Special Issue on RNA-Based Catalysts that Revolutionized the Discovery of Bioactive Peptides Hexagonal and Trigonal Quasiperiodic Tilings Breaking the Degeneracy of Sense Codons – How Far Can We Go? Cover Picture: (Isr. J. Chem. 6-7/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1