Sandra Megahed, Karl Michael Krämer, Christoph Heinze, Christian Kontermann, Annett Udoh, Stefan Weihe, Matthias Oechsner
{"title":"激光粉末床熔合制备IN738LC的蠕变:构向和孪晶的影响","authors":"Sandra Megahed, Karl Michael Krämer, Christoph Heinze, Christian Kontermann, Annett Udoh, Stefan Weihe, Matthias Oechsner","doi":"10.1080/09603409.2023.2261665","DOIUrl":null,"url":null,"abstract":"ABSTRACTThe microstructural anisotropy caused by the highly oriented solidification of the metal Laser Powder Bed Fusion (PBF-LB/M) process affects mechanical short- and long-term properties. Component build orientation influences grain morphology and orientation, and thus, mechanical properties. While the creep behaviour of samples manufactured parallel and perpendicular to the build direction are studied intensively, the 45° build orientation remains uncharacterised. In this study, IN738LC creep samples are manufactured via PBF-LB/M in three build orientations (0°, 45° and 90°). While the results of 90° and 0° are as expected, where 90° achieves the longest time to rupture and largest rupture strain, the 45° specimen shows the least fracture time. Differences in microstructure and twinning behaviour are identified as one of the root causes for this unexpected behaviour. This study discusses the correlation between microstructure, twinning and build orientation and their effect on creep behaviour, with special focus on the 45° build orientation.KEYWORDS: Laser powder bed fusionIN738LCbuild orientationcreepmicrostructuretwinning Disclosure statementNo potential conflict of interest was reported by the author(s).PatentsThere are no patents resulting from the work reported in this manuscript.Notes1. Hausner ratio, h = .Tapped Powder DensityBulk Powder Density2. Volume energy density,EV = Laser PowerScan Speed×Hatch Distance×Layer ThicknessAdditional informationFundingThe research project (FVV project no.1401) was performed by the Institute of Materials Technology of the Technical University Darmstadt under the guidance of Prof. Dr.-Ing. Matthias Oechsner and by the Materials Testing Institute at the University of Stuttgart under the guidance of Prof. Dr.-Ing. Stefan Weihe. Based on a decision taken by the German Bundestag, it was supported by the Federal Ministry for Economic Affairs and Climate Action (BMWK) and the AIF (German Federation of Industrial Research Associations eV) within the framework of the industrial collective research (IGF) programme (IGF No. 21220 N/1) The authors gratefully acknowledge the support received from the funding organisations, from the FVV eV and from all those involved in the project.","PeriodicalId":49877,"journal":{"name":"Materials at High Temperatures","volume":"101 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Creep of IN738LC manufactured with laser powder bed fusion: effect of build orientation and twinning\",\"authors\":\"Sandra Megahed, Karl Michael Krämer, Christoph Heinze, Christian Kontermann, Annett Udoh, Stefan Weihe, Matthias Oechsner\",\"doi\":\"10.1080/09603409.2023.2261665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTThe microstructural anisotropy caused by the highly oriented solidification of the metal Laser Powder Bed Fusion (PBF-LB/M) process affects mechanical short- and long-term properties. Component build orientation influences grain morphology and orientation, and thus, mechanical properties. While the creep behaviour of samples manufactured parallel and perpendicular to the build direction are studied intensively, the 45° build orientation remains uncharacterised. In this study, IN738LC creep samples are manufactured via PBF-LB/M in three build orientations (0°, 45° and 90°). While the results of 90° and 0° are as expected, where 90° achieves the longest time to rupture and largest rupture strain, the 45° specimen shows the least fracture time. Differences in microstructure and twinning behaviour are identified as one of the root causes for this unexpected behaviour. This study discusses the correlation between microstructure, twinning and build orientation and their effect on creep behaviour, with special focus on the 45° build orientation.KEYWORDS: Laser powder bed fusionIN738LCbuild orientationcreepmicrostructuretwinning Disclosure statementNo potential conflict of interest was reported by the author(s).PatentsThere are no patents resulting from the work reported in this manuscript.Notes1. Hausner ratio, h = .Tapped Powder DensityBulk Powder Density2. Volume energy density,EV = Laser PowerScan Speed×Hatch Distance×Layer ThicknessAdditional informationFundingThe research project (FVV project no.1401) was performed by the Institute of Materials Technology of the Technical University Darmstadt under the guidance of Prof. Dr.-Ing. Matthias Oechsner and by the Materials Testing Institute at the University of Stuttgart under the guidance of Prof. Dr.-Ing. Stefan Weihe. Based on a decision taken by the German Bundestag, it was supported by the Federal Ministry for Economic Affairs and Climate Action (BMWK) and the AIF (German Federation of Industrial Research Associations eV) within the framework of the industrial collective research (IGF) programme (IGF No. 21220 N/1) The authors gratefully acknowledge the support received from the funding organisations, from the FVV eV and from all those involved in the project.\",\"PeriodicalId\":49877,\"journal\":{\"name\":\"Materials at High Temperatures\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials at High Temperatures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09603409.2023.2261665\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials at High Temperatures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09603409.2023.2261665","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Creep of IN738LC manufactured with laser powder bed fusion: effect of build orientation and twinning
ABSTRACTThe microstructural anisotropy caused by the highly oriented solidification of the metal Laser Powder Bed Fusion (PBF-LB/M) process affects mechanical short- and long-term properties. Component build orientation influences grain morphology and orientation, and thus, mechanical properties. While the creep behaviour of samples manufactured parallel and perpendicular to the build direction are studied intensively, the 45° build orientation remains uncharacterised. In this study, IN738LC creep samples are manufactured via PBF-LB/M in three build orientations (0°, 45° and 90°). While the results of 90° and 0° are as expected, where 90° achieves the longest time to rupture and largest rupture strain, the 45° specimen shows the least fracture time. Differences in microstructure and twinning behaviour are identified as one of the root causes for this unexpected behaviour. This study discusses the correlation between microstructure, twinning and build orientation and their effect on creep behaviour, with special focus on the 45° build orientation.KEYWORDS: Laser powder bed fusionIN738LCbuild orientationcreepmicrostructuretwinning Disclosure statementNo potential conflict of interest was reported by the author(s).PatentsThere are no patents resulting from the work reported in this manuscript.Notes1. Hausner ratio, h = .Tapped Powder DensityBulk Powder Density2. Volume energy density,EV = Laser PowerScan Speed×Hatch Distance×Layer ThicknessAdditional informationFundingThe research project (FVV project no.1401) was performed by the Institute of Materials Technology of the Technical University Darmstadt under the guidance of Prof. Dr.-Ing. Matthias Oechsner and by the Materials Testing Institute at the University of Stuttgart under the guidance of Prof. Dr.-Ing. Stefan Weihe. Based on a decision taken by the German Bundestag, it was supported by the Federal Ministry for Economic Affairs and Climate Action (BMWK) and the AIF (German Federation of Industrial Research Associations eV) within the framework of the industrial collective research (IGF) programme (IGF No. 21220 N/1) The authors gratefully acknowledge the support received from the funding organisations, from the FVV eV and from all those involved in the project.
期刊介绍:
Materials at High Temperatures welcomes contributions relating to high temperature applications in the energy generation, aerospace, chemical and process industries. The effects of high temperatures and extreme environments on the corrosion and oxidation, fatigue, creep, strength and wear of metallic alloys, ceramics, intermetallics, and refractory and composite materials relative to these industries are covered.
Papers on the modelling of behaviour and life prediction are also welcome, provided these are validated by experimental data and explicitly linked to actual or potential applications. Contributions addressing the needs of designers and engineers (e.g. standards and codes of practice) relative to the areas of interest of this journal also fall within the scope. The term ''high temperatures'' refers to the subsequent temperatures of application and not, for example, to those of processing itself.
Materials at High Temperatures publishes regular thematic issues on topics of current interest. Proposals for issues are welcomed; please contact one of the Editors with details.