利用多尺度地理加权回归分析数字高程模型高程误差分布的空间背景

IF 3.7 4区 地球科学 Q2 REMOTE SENSING European Journal of Remote Sensing Pub Date : 2023-09-25 DOI:10.1080/22797254.2023.2260092
Zuleide Ferreira, Ana Cristina Costa, Pedro Cabral
{"title":"利用多尺度地理加权回归分析数字高程模型高程误差分布的空间背景","authors":"Zuleide Ferreira, Ana Cristina Costa, Pedro Cabral","doi":"10.1080/22797254.2023.2260092","DOIUrl":null,"url":null,"abstract":"Many freely available Digital Elevation Models (DEM) have increasingly been used worldwide due to the difficulty in acquiring accurate elevation data in some regions, emphasizing the need to investigate their accuracy and the factors that may influence their uncertainties. We performed an accuracy analysis of the Topodata DEM in the hydrographic region of Uruguay (Brazil) assuming that its vertical accuracy may be related to terrain characteristics. Multiscale Geographically Weighted Regression (MGWR) was applied to investigate the spatial scales over which terrain characteristics affect local variations in altimetric errors. MGWR outperformed Ordinary Least Squares (OLS) and Geographically Weighted Regression (GWR). MGWR results also showed that aspect, curvature, and artificial areas operate at much smaller scales than elevation and have a higher influence in areas with high positive altimetric errors. The model explains about 41% of the total variation of the altimetric error of the Topodata DEM in the study area. Our findings enrich the understanding of the global and local processes affecting the accuracy of the Topodata DEM and shed light on the importance of local terrain characteristics in effective DEM product development.","PeriodicalId":49077,"journal":{"name":"European Journal of Remote Sensing","volume":"43 1","pages":"0"},"PeriodicalIF":3.7000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysing the spatial context of the altimetric error pattern of a digital elevation model using multiscale geographically weighted regression\",\"authors\":\"Zuleide Ferreira, Ana Cristina Costa, Pedro Cabral\",\"doi\":\"10.1080/22797254.2023.2260092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many freely available Digital Elevation Models (DEM) have increasingly been used worldwide due to the difficulty in acquiring accurate elevation data in some regions, emphasizing the need to investigate their accuracy and the factors that may influence their uncertainties. We performed an accuracy analysis of the Topodata DEM in the hydrographic region of Uruguay (Brazil) assuming that its vertical accuracy may be related to terrain characteristics. Multiscale Geographically Weighted Regression (MGWR) was applied to investigate the spatial scales over which terrain characteristics affect local variations in altimetric errors. MGWR outperformed Ordinary Least Squares (OLS) and Geographically Weighted Regression (GWR). MGWR results also showed that aspect, curvature, and artificial areas operate at much smaller scales than elevation and have a higher influence in areas with high positive altimetric errors. The model explains about 41% of the total variation of the altimetric error of the Topodata DEM in the study area. Our findings enrich the understanding of the global and local processes affecting the accuracy of the Topodata DEM and shed light on the importance of local terrain characteristics in effective DEM product development.\",\"PeriodicalId\":49077,\"journal\":{\"name\":\"European Journal of Remote Sensing\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/22797254.2023.2260092\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/22797254.2023.2260092","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

摘要

由于在一些地区难以获得准确的高程数据,许多免费的数字高程模型(DEM)在世界范围内得到了越来越多的使用,这强调了研究其精度和可能影响其不确定性的因素的必要性。我们对乌拉圭(巴西)水文区域的Topodata DEM进行了精度分析,假设其垂直精度可能与地形特征有关。采用多尺度地理加权回归(MGWR)研究了地形特征对局部高程误差影响的空间尺度。MGWR优于普通最小二乘(OLS)和地理加权回归(GWR)。MGWR结果还表明,坡向、曲率和人工面积在比高程小得多的尺度上起作用,并且在高程正误差较大的地区具有更大的影响。该模型解释了研究区Topodata DEM高程误差总变化的41%左右。我们的研究结果丰富了对影响Topodata DEM精度的全球和局部过程的理解,并揭示了局部地形特征在有效的DEM产品开发中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysing the spatial context of the altimetric error pattern of a digital elevation model using multiscale geographically weighted regression
Many freely available Digital Elevation Models (DEM) have increasingly been used worldwide due to the difficulty in acquiring accurate elevation data in some regions, emphasizing the need to investigate their accuracy and the factors that may influence their uncertainties. We performed an accuracy analysis of the Topodata DEM in the hydrographic region of Uruguay (Brazil) assuming that its vertical accuracy may be related to terrain characteristics. Multiscale Geographically Weighted Regression (MGWR) was applied to investigate the spatial scales over which terrain characteristics affect local variations in altimetric errors. MGWR outperformed Ordinary Least Squares (OLS) and Geographically Weighted Regression (GWR). MGWR results also showed that aspect, curvature, and artificial areas operate at much smaller scales than elevation and have a higher influence in areas with high positive altimetric errors. The model explains about 41% of the total variation of the altimetric error of the Topodata DEM in the study area. Our findings enrich the understanding of the global and local processes affecting the accuracy of the Topodata DEM and shed light on the importance of local terrain characteristics in effective DEM product development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.00
自引率
2.50%
发文量
51
审稿时长
>12 weeks
期刊介绍: European Journal of Remote Sensing publishes research papers and review articles related to the use of remote sensing technologies. The Journal welcomes submissions on all applications related to the use of active or passive remote sensing to terrestrial, oceanic, and atmospheric environments. The most common thematic areas covered by the Journal include: -land use/land cover -geology, earth and geoscience -agriculture and forestry -geography and landscape -ecology and environmental science -support to land management -hydrology and water resources -atmosphere and meteorology -oceanography -new sensor systems, missions and software/algorithms -pre processing/calibration -classifications -time series/change analysis -data integration/merging/fusion -image processing and analysis -modelling European Journal of Remote Sensing is a fully open access journal. This means all submitted articles will, if accepted, be available for anyone to read anywhere, at any time, immediately on publication. There are no charges for submission to this journal.
期刊最新文献
Spatial-temporal response of the regional ecological quality to urban settlement development Impact of atmospheric vertical profile on hyperspectral simulations over bright desert pseudo-invariant calibration site Usable observations over Europe: evaluation of compositing windows for Landsat and Sentinel-2 time series Characterizing the variability and trend of rainfall in central highlands of Abbay Basin, Ethiopia: using IMERG-06 dataset Enhanced large-scale building extraction evaluation: developing a two-level framework using proxy data and building matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1