联邦广义张量标量回归

IF 2.6 2区 工程技术 Q2 ENGINEERING, INDUSTRIAL Journal of Quality Technology Pub Date : 2023-09-25 DOI:10.1080/00224065.2023.2246600
Elif Konyar, Mostafa Reisi Gahrooei
{"title":"联邦广义张量标量回归","authors":"Elif Konyar, Mostafa Reisi Gahrooei","doi":"10.1080/00224065.2023.2246600","DOIUrl":null,"url":null,"abstract":"AbstractComplex systems are generating more and more high-dimensional data for which tensor analysis showed promising results by capturing complex correlation structures of data. Such data is often distributed among various sites creating challenges for developing data-driven models. Specifically, data privacy and security concerns have been exacerbated in recent years and drove the demand to store and analyze data at the edge of networks rather than sharing it with a centralized server. Federated learning frameworks have been introduced as a solution to these concerns. These frameworks allow local clients to learn local models and collaborate with others to develop a more generalizable aggregated model while handling data privacy issues. In this article, we propose a federated generalized scalar-on-tensor regression framework where multiple local tensor models are learned at the edge, and their parameters are shared with and updated by an aggregator. Experiments on synthetic data sets and two real-world data sets from agriculture and manufacturing domains show the superiority of our approach over several benchmarks.Keywords: aggregated modelfederated learningpersonalized modelscalar-on-tensor regression AcknowledgementsWe would like to thank Ioannis Ampatzidis, Lucas Fideles Costa and Vitor Gontijo da Cunha for providing hyperspectral image data collected at the Southwest Florida Research and Education Center. Also, we would like to thank Massimo Pacella for providing access to the vehicle engine sensor data.Data availability statementThe data used in this article are not publicly available. To request access to the data used in Case Study I (Section 6.1) and Case Study II (Section 6.2), one may contact the corresponding authors of (Costa et al. Citation2022) and (Pacella Citation2018), respectively.Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThis work has been partially supported by the National Science Foundation (NSF) award 2212878.Notes on contributorsElif KonyarElif Konyar is a doctoral student in the Department of Industrial and Systems Engineering at University of Florida. Her email address is elif.konyar@ufl.edu.Mostafa Reisi GahrooeiDr. Mostafa Reisi Gahrooei is an Assistant Professor in the Department of Industrial and Systems Engineering at University of Florida. His email address is mreisigahrooei@ufl.edu. He is the corresponding author.","PeriodicalId":54769,"journal":{"name":"Journal of Quality Technology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Federated generalized scalar-on-tensor regression\",\"authors\":\"Elif Konyar, Mostafa Reisi Gahrooei\",\"doi\":\"10.1080/00224065.2023.2246600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractComplex systems are generating more and more high-dimensional data for which tensor analysis showed promising results by capturing complex correlation structures of data. Such data is often distributed among various sites creating challenges for developing data-driven models. Specifically, data privacy and security concerns have been exacerbated in recent years and drove the demand to store and analyze data at the edge of networks rather than sharing it with a centralized server. Federated learning frameworks have been introduced as a solution to these concerns. These frameworks allow local clients to learn local models and collaborate with others to develop a more generalizable aggregated model while handling data privacy issues. In this article, we propose a federated generalized scalar-on-tensor regression framework where multiple local tensor models are learned at the edge, and their parameters are shared with and updated by an aggregator. Experiments on synthetic data sets and two real-world data sets from agriculture and manufacturing domains show the superiority of our approach over several benchmarks.Keywords: aggregated modelfederated learningpersonalized modelscalar-on-tensor regression AcknowledgementsWe would like to thank Ioannis Ampatzidis, Lucas Fideles Costa and Vitor Gontijo da Cunha for providing hyperspectral image data collected at the Southwest Florida Research and Education Center. Also, we would like to thank Massimo Pacella for providing access to the vehicle engine sensor data.Data availability statementThe data used in this article are not publicly available. To request access to the data used in Case Study I (Section 6.1) and Case Study II (Section 6.2), one may contact the corresponding authors of (Costa et al. Citation2022) and (Pacella Citation2018), respectively.Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThis work has been partially supported by the National Science Foundation (NSF) award 2212878.Notes on contributorsElif KonyarElif Konyar is a doctoral student in the Department of Industrial and Systems Engineering at University of Florida. Her email address is elif.konyar@ufl.edu.Mostafa Reisi GahrooeiDr. Mostafa Reisi Gahrooei is an Assistant Professor in the Department of Industrial and Systems Engineering at University of Florida. His email address is mreisigahrooei@ufl.edu. He is the corresponding author.\",\"PeriodicalId\":54769,\"journal\":{\"name\":\"Journal of Quality Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quality Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00224065.2023.2246600\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quality Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00224065.2023.2246600","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要复杂系统产生了越来越多的高维数据,张量分析通过捕捉数据的复杂关联结构显示出良好的结果。这些数据通常分布在不同的站点中,这给开发数据驱动的模型带来了挑战。具体来说,数据隐私和安全问题近年来已经加剧,并推动了在网络边缘存储和分析数据的需求,而不是与中央服务器共享数据。联邦学习框架的引入是为了解决这些问题。这些框架允许本地客户学习本地模型,并与其他客户协作,在处理数据隐私问题时开发更通用的聚合模型。在本文中,我们提出了一个联邦广义张量标量回归框架,其中在边缘处学习多个局部张量模型,并与聚合器共享和更新它们的参数。在合成数据集和来自农业和制造业领域的两个真实数据集上的实验表明,我们的方法优于几个基准。我们要感谢Ioannis Ampatzidis, Lucas Fideles Costa和Vitor Gontijo da Cunha提供的在西南佛罗里达研究与教育中心收集的高光谱图像数据。同时,我们要感谢Massimo Pacella为我们提供车辆发动机传感器数据。数据可用性声明本文中使用的数据不是公开的。如需访问案例研究I(第6.1节)和案例研究II(第6.2节)中使用的数据,可联系(Costa等人)的通讯作者。Citation2022)和(Pacella Citation2018)。披露声明作者未报告潜在的利益冲突。本研究得到了美国国家科学基金会(NSF) 2212878奖的部分资助。作者selif Konyar是佛罗里达大学工业与系统工程系的一名博士生。她的电子邮件地址是elif.konyar@ufl.edu.Mostafa Reisi GahrooeiDr。Mostafa Reisi Gahrooei是佛罗里达大学工业与系统工程系的助理教授。他的电子邮件地址是mreisigahrooei@ufl.edu。他是通讯作者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Federated generalized scalar-on-tensor regression
AbstractComplex systems are generating more and more high-dimensional data for which tensor analysis showed promising results by capturing complex correlation structures of data. Such data is often distributed among various sites creating challenges for developing data-driven models. Specifically, data privacy and security concerns have been exacerbated in recent years and drove the demand to store and analyze data at the edge of networks rather than sharing it with a centralized server. Federated learning frameworks have been introduced as a solution to these concerns. These frameworks allow local clients to learn local models and collaborate with others to develop a more generalizable aggregated model while handling data privacy issues. In this article, we propose a federated generalized scalar-on-tensor regression framework where multiple local tensor models are learned at the edge, and their parameters are shared with and updated by an aggregator. Experiments on synthetic data sets and two real-world data sets from agriculture and manufacturing domains show the superiority of our approach over several benchmarks.Keywords: aggregated modelfederated learningpersonalized modelscalar-on-tensor regression AcknowledgementsWe would like to thank Ioannis Ampatzidis, Lucas Fideles Costa and Vitor Gontijo da Cunha for providing hyperspectral image data collected at the Southwest Florida Research and Education Center. Also, we would like to thank Massimo Pacella for providing access to the vehicle engine sensor data.Data availability statementThe data used in this article are not publicly available. To request access to the data used in Case Study I (Section 6.1) and Case Study II (Section 6.2), one may contact the corresponding authors of (Costa et al. Citation2022) and (Pacella Citation2018), respectively.Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThis work has been partially supported by the National Science Foundation (NSF) award 2212878.Notes on contributorsElif KonyarElif Konyar is a doctoral student in the Department of Industrial and Systems Engineering at University of Florida. Her email address is elif.konyar@ufl.edu.Mostafa Reisi GahrooeiDr. Mostafa Reisi Gahrooei is an Assistant Professor in the Department of Industrial and Systems Engineering at University of Florida. His email address is mreisigahrooei@ufl.edu. He is the corresponding author.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Quality Technology
Journal of Quality Technology 管理科学-工程:工业
CiteScore
5.20
自引率
4.00%
发文量
23
审稿时长
>12 weeks
期刊介绍: The objective of Journal of Quality Technology is to contribute to the technical advancement of the field of quality technology by publishing papers that emphasize the practical applicability of new techniques, instructive examples of the operation of existing techniques and results of historical researches. Expository, review, and tutorial papers are also acceptable if they are written in a style suitable for practicing engineers. Sample our Mathematics & Statistics journals, sign in here to start your FREE access for 14 days
期刊最新文献
Joint monitoring of location and scale for modern univariate processes Construction of orthogonal-MaxPro Latin hypercube designs Multimodal recognition and prognostics based on features extracted via multisensor degradation modeling V2X, GNSS, radar, and camera-based intelligent system for adaptive control of heavy mining vehicles during foggy weather Construction of orthogonal maximin distance designs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1