费米金属中的低温小角电子-电子散射速率

IF 1.8 4区 物理与天体物理 Q4 CHEMISTRY, PHYSICAL Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences Pub Date : 2023-09-25 DOI:10.1515/zna-2023-0099
Andrew Das Arulsamy
{"title":"费米金属中的低温小角电子-电子散射速率","authors":"Andrew Das Arulsamy","doi":"10.1515/zna-2023-0099","DOIUrl":null,"url":null,"abstract":"Abstract Low-temperature elementary conductivity formula in Fermi metals is reviewed starting from Ohm’s law. This provides the background needed to understand why and how the equations exploited are complicated due to effective mass effect and complex scattering rate even in the presence of small-angle electron-electron scattering at low temperatures. Using the mathematical conditions and physical arguments exploited to derive the Drude conductivity formula, we arrive at our main result—the analytic scattering rate formula at low temperatures that gives rise to the famous T 2 dependence without any ad hoc constants. Our derivation formally proves that the formula, <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mn>1</m:mn> <m:mo>/</m:mo> <m:mi>τ</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>A</m:mi> <m:mo>/</m:mo> <m:mi>ℏ</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>k</m:mi> </m:mrow> <m:mrow> <m:mtext>B</m:mtext> </m:mrow> </m:msub> <m:mi>T</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mo>/</m:mo> <m:msub> <m:mrow> <m:mi>E</m:mi> </m:mrow> <m:mrow> <m:mtext>F</m:mtext> </m:mrow> </m:msub> </m:math> $1/\\tau =(A/\\hslash ){({k}_{\\text{B}}T)}^{2}/{E}_{\\text{F}}$ first guessed by Ashcroft and Mermin to be correct where A = N impurity /4 π 2 and N impurity is the number of impurities (or scattering centers) present in a given sample. We also highlight the discovery of a new fundamental physical constant, <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msub> <m:mrow> <m:mi>λ</m:mi> </m:mrow> <m:mrow> <m:mtext>Arulsamy</m:mtext> </m:mrow> </m:msub> <m:mo>=</m:mo> <m:mfenced close=\"]\" open=\"[\"> <m:mrow> <m:mn>3</m:mn> <m:msup> <m:mrow> <m:mi>ℏ</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:msup> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mn>4</m:mn> <m:mi>π</m:mi> <m:msub> <m:mrow> <m:mi>ϵ</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:mrow> </m:mfenced> <m:mo>/</m:mo> <m:mfenced close=\"]\" open=\"[\"> <m:mrow> <m:msub> <m:mrow> <m:mi>m</m:mi> </m:mrow> <m:mrow> <m:mtext>el</m:mtext> </m:mrow> </m:msub> <m:msup> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mrow> <m:mn>4</m:mn> </m:mrow> </m:msup> </m:mrow> </m:mfenced> </m:math> ${\\lambda }_{\\text{Arulsamy}}=\\left[3{\\hslash }^{2}{(4\\pi {{\\epsilon}}_{0})}^{2}\\right]/\\left[{m}_{\\text{el}}{e}^{4}\\right]$ that associates quantum mechanical energy with that of thermal energy, and is also related to Rydberg constant.","PeriodicalId":54395,"journal":{"name":"Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences","volume":"21 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-temperature small-angle electron-electron scattering rate in Fermi metals\",\"authors\":\"Andrew Das Arulsamy\",\"doi\":\"10.1515/zna-2023-0099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Low-temperature elementary conductivity formula in Fermi metals is reviewed starting from Ohm’s law. This provides the background needed to understand why and how the equations exploited are complicated due to effective mass effect and complex scattering rate even in the presence of small-angle electron-electron scattering at low temperatures. Using the mathematical conditions and physical arguments exploited to derive the Drude conductivity formula, we arrive at our main result—the analytic scattering rate formula at low temperatures that gives rise to the famous T 2 dependence without any ad hoc constants. Our derivation formally proves that the formula, <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:mn>1</m:mn> <m:mo>/</m:mo> <m:mi>τ</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>A</m:mi> <m:mo>/</m:mo> <m:mi>ℏ</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>k</m:mi> </m:mrow> <m:mrow> <m:mtext>B</m:mtext> </m:mrow> </m:msub> <m:mi>T</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mo>/</m:mo> <m:msub> <m:mrow> <m:mi>E</m:mi> </m:mrow> <m:mrow> <m:mtext>F</m:mtext> </m:mrow> </m:msub> </m:math> $1/\\\\tau =(A/\\\\hslash ){({k}_{\\\\text{B}}T)}^{2}/{E}_{\\\\text{F}}$ first guessed by Ashcroft and Mermin to be correct where A = N impurity /4 π 2 and N impurity is the number of impurities (or scattering centers) present in a given sample. We also highlight the discovery of a new fundamental physical constant, <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:msub> <m:mrow> <m:mi>λ</m:mi> </m:mrow> <m:mrow> <m:mtext>Arulsamy</m:mtext> </m:mrow> </m:msub> <m:mo>=</m:mo> <m:mfenced close=\\\"]\\\" open=\\\"[\\\"> <m:mrow> <m:mn>3</m:mn> <m:msup> <m:mrow> <m:mi>ℏ</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:msup> <m:mrow> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mn>4</m:mn> <m:mi>π</m:mi> <m:msub> <m:mrow> <m:mi>ϵ</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:mrow> </m:mfenced> <m:mo>/</m:mo> <m:mfenced close=\\\"]\\\" open=\\\"[\\\"> <m:mrow> <m:msub> <m:mrow> <m:mi>m</m:mi> </m:mrow> <m:mrow> <m:mtext>el</m:mtext> </m:mrow> </m:msub> <m:msup> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mrow> <m:mn>4</m:mn> </m:mrow> </m:msup> </m:mrow> </m:mfenced> </m:math> ${\\\\lambda }_{\\\\text{Arulsamy}}=\\\\left[3{\\\\hslash }^{2}{(4\\\\pi {{\\\\epsilon}}_{0})}^{2}\\\\right]/\\\\left[{m}_{\\\\text{el}}{e}^{4}\\\\right]$ that associates quantum mechanical energy with that of thermal energy, and is also related to Rydberg constant.\",\"PeriodicalId\":54395,\"journal\":{\"name\":\"Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/zna-2023-0099\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/zna-2023-0099","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要从欧姆定律出发,对费米金属中的低温元素电导率公式进行了评述。这为理解有效的质量效应和复杂的散射率(即使在低温下存在小角度电子-电子散射)所导致的方程为何以及如何复杂提供了必要的背景。利用推导德鲁德电导率公式的数学条件和物理参数,我们得到了我们的主要结果——低温下的解析散射率公式,它产生了著名的t2依赖关系,没有任何特别常数。我们的推导正式证明了公式1 / τ = (A / h) (k B T) 2 / E F $1/\tau =(A/\hslash ){({k}_{\text{B}}T)}^{2}/{E}_{\text{F}}$首先由Ashcroft和Mermin猜测是正确的,其中A = N杂质/4 π 2, N杂质是给定样品中存在的杂质(或散射中心)的数量。我们还强调了一个新的基本物理常数的发现,λ Arulsamy = 3 π 2 (4 π ε 0) 2 / m el e 4 ${\lambda }_{\text{Arulsamy}}=\left[3{\hslash }^{2}{(4\pi {{\epsilon}}_{0})}^{2}\right]/\left[{m}_{\text{el}}{e}^{4}\right]$,它将量子力学能与热能能联系起来,也与Rydberg常数有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low-temperature small-angle electron-electron scattering rate in Fermi metals
Abstract Low-temperature elementary conductivity formula in Fermi metals is reviewed starting from Ohm’s law. This provides the background needed to understand why and how the equations exploited are complicated due to effective mass effect and complex scattering rate even in the presence of small-angle electron-electron scattering at low temperatures. Using the mathematical conditions and physical arguments exploited to derive the Drude conductivity formula, we arrive at our main result—the analytic scattering rate formula at low temperatures that gives rise to the famous T 2 dependence without any ad hoc constants. Our derivation formally proves that the formula, 1 / τ = ( A / ) ( k B T ) 2 / E F $1/\tau =(A/\hslash ){({k}_{\text{B}}T)}^{2}/{E}_{\text{F}}$ first guessed by Ashcroft and Mermin to be correct where A = N impurity /4 π 2 and N impurity is the number of impurities (or scattering centers) present in a given sample. We also highlight the discovery of a new fundamental physical constant, λ Arulsamy = 3 2 ( 4 π ϵ 0 ) 2 / m el e 4 ${\lambda }_{\text{Arulsamy}}=\left[3{\hslash }^{2}{(4\pi {{\epsilon}}_{0})}^{2}\right]/\left[{m}_{\text{el}}{e}^{4}\right]$ that associates quantum mechanical energy with that of thermal energy, and is also related to Rydberg constant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
81
审稿时长
3.3 months
期刊介绍: A Journal of Physical Sciences: Zeitschrift für Naturforschung A (ZNA) is an international scientific journal which publishes original research papers from all areas of experimental and theoretical physics. Authors are encouraged to pay particular attention to a clear exposition of their respective subject, addressing a wide readership. In accordance with the name of our journal, which means “Journal for Natural Sciences”, manuscripts submitted to ZNA should have a tangible connection to actual physical phenomena. In particular, we welcome experiment-oriented contributions.
期刊最新文献
Nonlinear vibration of microbeams subjected to a uniform magnetic field and rested on nonlinear elastic foundation Polar-plane flow in porous annular ducts with accelerated rotating walls. A region of stagnation inside the fluid Green creation of CoFe2O4 nanosorbent for superior toxic Cd ions elimination Bargmann transform and statistical properties for nonlinear coherent states of the isotonic oscillator Frontmatter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1