{"title":"基于时间卷积网络和bert的金融预测多标签情绪分析","authors":"Charalampos M. Liapis, Sotiris Kotsiantis","doi":"10.3390/info14110596","DOIUrl":null,"url":null,"abstract":"The use of deep learning in conjunction with models that extract emotion-related information from texts to predict financial time series is based on the assumption that what is said about a stock is correlated with the way that stock fluctuates. Given the above, in this work, a multivariate forecasting methodology incorporating temporal convolutional networks in combination with a BERT-based multi-label emotion classification procedure and correlation feature selection is proposed. The results from an extensive set of experiments, which included predictions of three different time frames and various multivariate ensemble schemes that capture 28 different types of emotion-relative information, are presented. It is shown that the proposed methodology exhibits universal predominance regarding aggregate performance over six different metrics, outperforming all the compared schemes, including a multitude of individual and ensemble methods, both in terms of aggregate average scores and Friedman rankings. Moreover, the results strongly indicate that the use of emotion-related features has beneficial effects on the derived forecasts.","PeriodicalId":38479,"journal":{"name":"Information (Switzerland)","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal Convolutional Networks and BERT-Based Multi-Label Emotion Analysis for Financial Forecasting\",\"authors\":\"Charalampos M. Liapis, Sotiris Kotsiantis\",\"doi\":\"10.3390/info14110596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of deep learning in conjunction with models that extract emotion-related information from texts to predict financial time series is based on the assumption that what is said about a stock is correlated with the way that stock fluctuates. Given the above, in this work, a multivariate forecasting methodology incorporating temporal convolutional networks in combination with a BERT-based multi-label emotion classification procedure and correlation feature selection is proposed. The results from an extensive set of experiments, which included predictions of three different time frames and various multivariate ensemble schemes that capture 28 different types of emotion-relative information, are presented. It is shown that the proposed methodology exhibits universal predominance regarding aggregate performance over six different metrics, outperforming all the compared schemes, including a multitude of individual and ensemble methods, both in terms of aggregate average scores and Friedman rankings. Moreover, the results strongly indicate that the use of emotion-related features has beneficial effects on the derived forecasts.\",\"PeriodicalId\":38479,\"journal\":{\"name\":\"Information (Switzerland)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information (Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/info14110596\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information (Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/info14110596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Temporal Convolutional Networks and BERT-Based Multi-Label Emotion Analysis for Financial Forecasting
The use of deep learning in conjunction with models that extract emotion-related information from texts to predict financial time series is based on the assumption that what is said about a stock is correlated with the way that stock fluctuates. Given the above, in this work, a multivariate forecasting methodology incorporating temporal convolutional networks in combination with a BERT-based multi-label emotion classification procedure and correlation feature selection is proposed. The results from an extensive set of experiments, which included predictions of three different time frames and various multivariate ensemble schemes that capture 28 different types of emotion-relative information, are presented. It is shown that the proposed methodology exhibits universal predominance regarding aggregate performance over six different metrics, outperforming all the compared schemes, including a multitude of individual and ensemble methods, both in terms of aggregate average scores and Friedman rankings. Moreover, the results strongly indicate that the use of emotion-related features has beneficial effects on the derived forecasts.