双因素Heston-Kou随机波动率模型下的近似期权定价

IF 1.3 Q3 SOCIAL SCIENCES, MATHEMATICAL METHODS Computational Management Science Pub Date : 2023-11-03 DOI:10.1007/s10287-023-00486-8
Youssef El-Khatib, Zororo S. Makumbe, Josep Vives
{"title":"双因素Heston-Kou随机波动率模型下的近似期权定价","authors":"Youssef El-Khatib, Zororo S. Makumbe, Josep Vives","doi":"10.1007/s10287-023-00486-8","DOIUrl":null,"url":null,"abstract":"Abstract Under a two-factor stochastic volatility jump (2FSVJ) model we obtain an exact decomposition formula for a plain vanilla option price and a second-order approximation of this formula, using Itô calculus techniques. The 2FSVJ model is a generalization of several models described in the literature such as Heston (Rev Financ Stud 6(2):327–343, 1993); Bates (Rev Financ Stud 9(1):69–107, 1996); Kou (Manag Sci 48(8):1086–1101, 2002); Christoffersen et al. (Manag Sci 55(12):1914–1932, 2009) models. Thus, the aim of this study is to extend some approximate pricing formulas described in the literature, like formulas in Alòs (Finance Stoch 16(3):403–422, 2012); Merino et al. (Int J Theor Appl Finance 21(08):1850052, 2018); Gulisashvili et al. (J Comput Finance 24(1), 2020), to pricing under the more general 2FSVJ model. Moreover, we provide numerical illustrations of our pricing method and its accuracy and computational advantage under double exponential and log-normal jumps. Numerically, our pricing method performs very well compared to the Fourier integral method. The performance is ideal for out-of-the-money options as well as for short maturities.","PeriodicalId":46743,"journal":{"name":"Computational Management Science","volume":"44 4","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximate option pricing under a two-factor Heston–Kou stochastic volatility model\",\"authors\":\"Youssef El-Khatib, Zororo S. Makumbe, Josep Vives\",\"doi\":\"10.1007/s10287-023-00486-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Under a two-factor stochastic volatility jump (2FSVJ) model we obtain an exact decomposition formula for a plain vanilla option price and a second-order approximation of this formula, using Itô calculus techniques. The 2FSVJ model is a generalization of several models described in the literature such as Heston (Rev Financ Stud 6(2):327–343, 1993); Bates (Rev Financ Stud 9(1):69–107, 1996); Kou (Manag Sci 48(8):1086–1101, 2002); Christoffersen et al. (Manag Sci 55(12):1914–1932, 2009) models. Thus, the aim of this study is to extend some approximate pricing formulas described in the literature, like formulas in Alòs (Finance Stoch 16(3):403–422, 2012); Merino et al. (Int J Theor Appl Finance 21(08):1850052, 2018); Gulisashvili et al. (J Comput Finance 24(1), 2020), to pricing under the more general 2FSVJ model. Moreover, we provide numerical illustrations of our pricing method and its accuracy and computational advantage under double exponential and log-normal jumps. Numerically, our pricing method performs very well compared to the Fourier integral method. The performance is ideal for out-of-the-money options as well as for short maturities.\",\"PeriodicalId\":46743,\"journal\":{\"name\":\"Computational Management Science\",\"volume\":\"44 4\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Management Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10287-023-00486-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Management Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10287-023-00486-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0

摘要

摘要在双因素随机波动跳变(2FSVJ)模型下,利用Itô微积分技术,得到了普通期权价格的精确分解公式和该公式的二阶近似。2FSVJ模型是文献中描述的几个模型的概括,如Heston (Rev finance Stud 6(2): 327-343, 1993);贝茨(Rev finance Stud 9(1): 69-107, 1996);管理科学48(8):1086-1101,2002);Christoffersen et al.(管理科学55(12):1914-1932,2009)模型。因此,本研究的目的是扩展文献中描述的一些近似定价公式,如Alòs中的公式(Finance Stoch 16(3): 403-422, 2012);Merino et al.(国际理论与应用金融杂志21(08):1850052,2018);Gulisashvili et al. (J computer Finance 24(1), 2020),在更通用的2FSVJ模型下定价。此外,我们还提供了数值实例说明我们的定价方法及其在双指数和对数正态跳跃下的准确性和计算优势。在数值上,与傅里叶积分法相比,我们的定价方法表现得非常好。这种表现对于现金外期权和短期期权都是理想的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Approximate option pricing under a two-factor Heston–Kou stochastic volatility model
Abstract Under a two-factor stochastic volatility jump (2FSVJ) model we obtain an exact decomposition formula for a plain vanilla option price and a second-order approximation of this formula, using Itô calculus techniques. The 2FSVJ model is a generalization of several models described in the literature such as Heston (Rev Financ Stud 6(2):327–343, 1993); Bates (Rev Financ Stud 9(1):69–107, 1996); Kou (Manag Sci 48(8):1086–1101, 2002); Christoffersen et al. (Manag Sci 55(12):1914–1932, 2009) models. Thus, the aim of this study is to extend some approximate pricing formulas described in the literature, like formulas in Alòs (Finance Stoch 16(3):403–422, 2012); Merino et al. (Int J Theor Appl Finance 21(08):1850052, 2018); Gulisashvili et al. (J Comput Finance 24(1), 2020), to pricing under the more general 2FSVJ model. Moreover, we provide numerical illustrations of our pricing method and its accuracy and computational advantage under double exponential and log-normal jumps. Numerically, our pricing method performs very well compared to the Fourier integral method. The performance is ideal for out-of-the-money options as well as for short maturities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Management Science
Computational Management Science SOCIAL SCIENCES, MATHEMATICAL METHODS-
CiteScore
1.90
自引率
11.10%
发文量
13
期刊介绍: Computational Management Science (CMS) is an international journal focusing on all computational aspects of management science. These include theoretical and empirical analysis of computational models; computational statistics; analysis and applications of constrained, unconstrained, robust, stochastic and combinatorial optimisation algorithms; dynamic models, such as dynamic programming and decision trees; new search tools and algorithms for global optimisation, modelling, learning and forecasting; models and tools of knowledge acquisition. The emphasis on computational paradigms is an intended feature of CMS, distinguishing it from more classical operations research journals. Officially cited as: Comput Manag Sci
期刊最新文献
Nested Benders’s decomposition of capacity-planning problems for electricity systems with hydroelectric and renewable generation Preconditioning meets biased compression for efficient distributed optimization Affiliations based bibliometric analysis of publications on parkinson’s disease Addressing the economic and demographic complexity via a neural network approach: risk measures for reverse mortgages Potts game on graphs: static equilibria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1