{"title":"基于改进统计纳米压痕方法的Al2124-SiC纳米复合材料研究","authors":"Esteban Broitman, Yuri Kadin, Predrag Andric","doi":"10.1116/6.0003048","DOIUrl":null,"url":null,"abstract":"In this work, we first review the previous work done on statistical nanoindentation by different researchers, highlighting the main problems that have been found and possible proposed solutions. In the second part, we study and report the statistical nanoindentation of three model samples, in the form of a soft Al2124 matrix embedded with hard SiC particles. Three different variants were selected: (1) 25% of SiC particles with 3 μm diameter; (2) 25% of SiC particles with 0.7 μm diameter; and (3) 17% of SiC particles with 0.3 μm diameter. We propose a novel heuristic wavelet technique to filter the measurement noise from the raw nanoindentation data as an attempt to obtain a more robust statistical nanoindentation methodology. Our results have shown that, when the nanoindentation data are filtered, it is not necessary to select a priori the number of peaks (phases) to be analyzed and, in some cases, a wide number of bin-sizes can be used without affecting the results. Finally, a finite element modeling have been used to analyze the response of the nanoindenter regarding the position of the hard particle. Our model shows that it is impossible to get the whole hardness value of the hard SiC particle by the statistical nanoindentation methodology.","PeriodicalId":17490,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":"45 7","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of Al2124-SiC nanocomposites by an improved statistical nanoindentation methodology\",\"authors\":\"Esteban Broitman, Yuri Kadin, Predrag Andric\",\"doi\":\"10.1116/6.0003048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we first review the previous work done on statistical nanoindentation by different researchers, highlighting the main problems that have been found and possible proposed solutions. In the second part, we study and report the statistical nanoindentation of three model samples, in the form of a soft Al2124 matrix embedded with hard SiC particles. Three different variants were selected: (1) 25% of SiC particles with 3 μm diameter; (2) 25% of SiC particles with 0.7 μm diameter; and (3) 17% of SiC particles with 0.3 μm diameter. We propose a novel heuristic wavelet technique to filter the measurement noise from the raw nanoindentation data as an attempt to obtain a more robust statistical nanoindentation methodology. Our results have shown that, when the nanoindentation data are filtered, it is not necessary to select a priori the number of peaks (phases) to be analyzed and, in some cases, a wide number of bin-sizes can be used without affecting the results. Finally, a finite element modeling have been used to analyze the response of the nanoindenter regarding the position of the hard particle. Our model shows that it is impossible to get the whole hardness value of the hard SiC particle by the statistical nanoindentation methodology.\",\"PeriodicalId\":17490,\"journal\":{\"name\":\"Journal of Vacuum Science & Technology A\",\"volume\":\"45 7\",\"pages\":\"0\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vacuum Science & Technology A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0003048\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0003048","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Study of Al2124-SiC nanocomposites by an improved statistical nanoindentation methodology
In this work, we first review the previous work done on statistical nanoindentation by different researchers, highlighting the main problems that have been found and possible proposed solutions. In the second part, we study and report the statistical nanoindentation of three model samples, in the form of a soft Al2124 matrix embedded with hard SiC particles. Three different variants were selected: (1) 25% of SiC particles with 3 μm diameter; (2) 25% of SiC particles with 0.7 μm diameter; and (3) 17% of SiC particles with 0.3 μm diameter. We propose a novel heuristic wavelet technique to filter the measurement noise from the raw nanoindentation data as an attempt to obtain a more robust statistical nanoindentation methodology. Our results have shown that, when the nanoindentation data are filtered, it is not necessary to select a priori the number of peaks (phases) to be analyzed and, in some cases, a wide number of bin-sizes can be used without affecting the results. Finally, a finite element modeling have been used to analyze the response of the nanoindenter regarding the position of the hard particle. Our model shows that it is impossible to get the whole hardness value of the hard SiC particle by the statistical nanoindentation methodology.
期刊介绍:
Journal of Vacuum Science & Technology A publishes reports of original research, letters, and review articles that focus on fundamental scientific understanding of interfaces, surfaces, plasmas and thin films and on using this understanding to advance the state-of-the-art in various technological applications.