电导体材料界面微结构建模的计算多尺度方法

IF 1.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Mathematics and Mechanics of Solids Pub Date : 2023-11-03 DOI:10.1177/10812865231202721
Dilek Güzel, Tobias Kaiser, Andreas Menzel
{"title":"电导体材料界面微结构建模的计算多尺度方法","authors":"Dilek Güzel, Tobias Kaiser, Andreas Menzel","doi":"10.1177/10812865231202721","DOIUrl":null,"url":null,"abstract":"Motivated by the change of effective electrical properties grain or phase boundaries, a computational multiscale framework for continua with interfaces at the microscale is proposed. Cohesive-type interfaces are considered at the microscale, such that displacement and electrical potential jumps are accounted for. The governing equations for materials with interfaces under mechanical and electrical loads are provided. Based on these, a computational multiscale formulation is proposed. The coupling between the electrical and mechanical subproblem is established by the constitutive equations at the material interface. In order to investigate deformation-induced property changes at the microscale, the evolution of interface damage is elaborated. The proposed multiscale framework is further examined through various representative boundary value problems so as to identify its key properties.","PeriodicalId":49854,"journal":{"name":"Mathematics and Mechanics of Solids","volume":"45 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A computational multiscale approach towards the modelling of microstructures with material interfaces in electrical conductors\",\"authors\":\"Dilek Güzel, Tobias Kaiser, Andreas Menzel\",\"doi\":\"10.1177/10812865231202721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by the change of effective electrical properties grain or phase boundaries, a computational multiscale framework for continua with interfaces at the microscale is proposed. Cohesive-type interfaces are considered at the microscale, such that displacement and electrical potential jumps are accounted for. The governing equations for materials with interfaces under mechanical and electrical loads are provided. Based on these, a computational multiscale formulation is proposed. The coupling between the electrical and mechanical subproblem is established by the constitutive equations at the material interface. In order to investigate deformation-induced property changes at the microscale, the evolution of interface damage is elaborated. The proposed multiscale framework is further examined through various representative boundary value problems so as to identify its key properties.\",\"PeriodicalId\":49854,\"journal\":{\"name\":\"Mathematics and Mechanics of Solids\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Mechanics of Solids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/10812865231202721\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Mechanics of Solids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/10812865231202721","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

以晶界或相界有效电学性质的变化为动力,提出了一种微尺度下具有界面的连续体的计算多尺度框架。在微观尺度上考虑黏结型界面,从而考虑位移和电位跳变。给出了具有界面的材料在机械载荷和电载荷作用下的控制方程。在此基础上,提出了一种多尺度计算公式。通过材料界面处的本构方程,建立了电学子问题与力学子问题的耦合关系。为了在微观尺度上研究变形引起的性能变化,阐述了界面损伤的演化过程。通过各种具有代表性的边值问题对所提出的多尺度框架进行进一步检验,以确定其关键性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A computational multiscale approach towards the modelling of microstructures with material interfaces in electrical conductors
Motivated by the change of effective electrical properties grain or phase boundaries, a computational multiscale framework for continua with interfaces at the microscale is proposed. Cohesive-type interfaces are considered at the microscale, such that displacement and electrical potential jumps are accounted for. The governing equations for materials with interfaces under mechanical and electrical loads are provided. Based on these, a computational multiscale formulation is proposed. The coupling between the electrical and mechanical subproblem is established by the constitutive equations at the material interface. In order to investigate deformation-induced property changes at the microscale, the evolution of interface damage is elaborated. The proposed multiscale framework is further examined through various representative boundary value problems so as to identify its key properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics and Mechanics of Solids
Mathematics and Mechanics of Solids 工程技术-材料科学:综合
CiteScore
4.80
自引率
19.20%
发文量
159
审稿时长
1 months
期刊介绍: Mathematics and Mechanics of Solids is an international peer-reviewed journal that publishes the highest quality original innovative research in solid mechanics and materials science. The central aim of MMS is to publish original, well-written and self-contained research that elucidates the mechanical behaviour of solids with particular emphasis on mathematical principles. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Plane-stress analysis of a holed membrane at finite equibiaxial stretch Comment on “Explicit solutions in Cartesian coordinates for an elliptic hole in an infinite elastic plate” by M. Oore and S. Oore Sensitivity analysis of an inflated and extended fiber-reinforced membrane with different natural configurations of its constituents Finite-strain Poynting–Thomson model: Existence and linearization Reflection of plane waves from the free surface of a hard sphere-filled elastic metacomposite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1