{"title":"用于电力、制冷、供暖和淡水生产的新型太阳能多发电系统的热力学分析和性能评估","authors":"Mohd Asjad Siddiqui","doi":"10.1115/1.4063622","DOIUrl":null,"url":null,"abstract":"Abstract This study offers a comprehensive assessment of the thermodynamic performance of a novel solar-based multigeneration system, which caters to the energy needs of a sustainable community by producing electricity, cooling, heating, and freshwater. The solar-based multigeneration system is comprised of four main components: the thermal subsystem of the parabolic trough collector (PTC) employing CO2 as a heat transfer fluid, a single-effect absorption refrigeration cycle (ARC), a supercritical CO2 (S-CO2) cycle, and an adsorption desalination (AD) cycle with heat recovery employing aluminum fumarate metal–organic framework (MOF) adsorbent material. A comprehensive parametric study was performed on the proposed solar-based multigeneration system by varying key parameters to evaluate its performance. It is found that the thermal and exergy efficiencies of a PTC were evaluated to be 68.35% and 29.88%, respectively, at a fixed inlet temperature of 225 °C and solar irradiation of 850 W/m2 and also a slight reduction in the ARC cycle when examining the variation in the thermal and exergetic COPs for the generator temperature. Additionally, the thermal and exergy efficiencies of electricity, cooling, and heating were determined to be 20.41% and 21.93%, 41.34% and 3.51%, and 7.14% and 3.07%, respectively, at the operating condition. The maximum specific daily water production (SDWP) value of 12.91 m3/ton/day and a gain output ratio (GOR) of 0.64 were obtained under steady operating conditions in the AD cycle.","PeriodicalId":17124,"journal":{"name":"Journal of Solar Energy Engineering-transactions of The Asme","volume":"14 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic analysis and performance assessment of a novel solar-based multigeneration system for electricity, cooling, heating, and freshwater production\",\"authors\":\"Mohd Asjad Siddiqui\",\"doi\":\"10.1115/1.4063622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This study offers a comprehensive assessment of the thermodynamic performance of a novel solar-based multigeneration system, which caters to the energy needs of a sustainable community by producing electricity, cooling, heating, and freshwater. The solar-based multigeneration system is comprised of four main components: the thermal subsystem of the parabolic trough collector (PTC) employing CO2 as a heat transfer fluid, a single-effect absorption refrigeration cycle (ARC), a supercritical CO2 (S-CO2) cycle, and an adsorption desalination (AD) cycle with heat recovery employing aluminum fumarate metal–organic framework (MOF) adsorbent material. A comprehensive parametric study was performed on the proposed solar-based multigeneration system by varying key parameters to evaluate its performance. It is found that the thermal and exergy efficiencies of a PTC were evaluated to be 68.35% and 29.88%, respectively, at a fixed inlet temperature of 225 °C and solar irradiation of 850 W/m2 and also a slight reduction in the ARC cycle when examining the variation in the thermal and exergetic COPs for the generator temperature. Additionally, the thermal and exergy efficiencies of electricity, cooling, and heating were determined to be 20.41% and 21.93%, 41.34% and 3.51%, and 7.14% and 3.07%, respectively, at the operating condition. The maximum specific daily water production (SDWP) value of 12.91 m3/ton/day and a gain output ratio (GOR) of 0.64 were obtained under steady operating conditions in the AD cycle.\",\"PeriodicalId\":17124,\"journal\":{\"name\":\"Journal of Solar Energy Engineering-transactions of The Asme\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solar Energy Engineering-transactions of The Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063622\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solar Energy Engineering-transactions of The Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063622","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Thermodynamic analysis and performance assessment of a novel solar-based multigeneration system for electricity, cooling, heating, and freshwater production
Abstract This study offers a comprehensive assessment of the thermodynamic performance of a novel solar-based multigeneration system, which caters to the energy needs of a sustainable community by producing electricity, cooling, heating, and freshwater. The solar-based multigeneration system is comprised of four main components: the thermal subsystem of the parabolic trough collector (PTC) employing CO2 as a heat transfer fluid, a single-effect absorption refrigeration cycle (ARC), a supercritical CO2 (S-CO2) cycle, and an adsorption desalination (AD) cycle with heat recovery employing aluminum fumarate metal–organic framework (MOF) adsorbent material. A comprehensive parametric study was performed on the proposed solar-based multigeneration system by varying key parameters to evaluate its performance. It is found that the thermal and exergy efficiencies of a PTC were evaluated to be 68.35% and 29.88%, respectively, at a fixed inlet temperature of 225 °C and solar irradiation of 850 W/m2 and also a slight reduction in the ARC cycle when examining the variation in the thermal and exergetic COPs for the generator temperature. Additionally, the thermal and exergy efficiencies of electricity, cooling, and heating were determined to be 20.41% and 21.93%, 41.34% and 3.51%, and 7.14% and 3.07%, respectively, at the operating condition. The maximum specific daily water production (SDWP) value of 12.91 m3/ton/day and a gain output ratio (GOR) of 0.64 were obtained under steady operating conditions in the AD cycle.
期刊介绍:
The Journal of Solar Energy Engineering - Including Wind Energy and Building Energy Conservation - publishes research papers that contain original work of permanent interest in all areas of solar energy and energy conservation, as well as discussions of policy and regulatory issues that affect renewable energy technologies and their implementation. Papers that do not include original work, but nonetheless present quality analysis or incremental improvements to past work may be published as Technical Briefs. Review papers are accepted but should be discussed with the Editor prior to submission. The Journal also publishes a section called Solar Scenery that features photographs or graphical displays of significant new installations or research facilities.