{"title":"n -硼烷取代环膦亚胺(BCPIs)","authors":"Shun Nagai, Takaya Hinogami, Sensuke Ogoshi, Yoichi Hoshimoto","doi":"10.1246/bcsj.20230228","DOIUrl":null,"url":null,"abstract":"Phosphine imides are ubiquitous nucleophiles/Lewis bases in modern organic chemistry. The introduction of unexplored substituents on the phosphine imidoyl nitrogen and/or phosphorus atoms should facilitate the discovery of unprecedented utility for phosphine imides. Herein, we have designed and prepared a novel class of phosphine imides known as N -borane-substituted cyclic phosphine imides (BCPIs). Experimental and theoretical analyses of the electronic structure of BCPIs demonstrate the existence of substantial negative hyperconjugation between the nitrogen and the phosphorus atoms. Given a characteristic nucleophilic/Lewis basic reactivity of BCPIs, we represent the first experimental demonstration that a 5 -oxazaphosphetane species is a key intermediate in the transformation of CO 2 using phosphine imides. Moreover, although it has been previously considered unlikely, the spontaneous heterolysis of a B ‒ Cl bond in a BCPI-coordinated chloroborane has been directly observed, suggesting that such process is a plausible key step in the Lewis acid-promoted generation of borenium species from chloroboranes. These results thus provide evidence of two species that have been missing in contemporary organic chemistry. Graphical Abstract","PeriodicalId":9511,"journal":{"name":"Bulletin of the Chemical Society of Japan","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<i>N</i>-Borane-Substituted Cyclic Phosphine Imides (BCPIs)\",\"authors\":\"Shun Nagai, Takaya Hinogami, Sensuke Ogoshi, Yoichi Hoshimoto\",\"doi\":\"10.1246/bcsj.20230228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phosphine imides are ubiquitous nucleophiles/Lewis bases in modern organic chemistry. The introduction of unexplored substituents on the phosphine imidoyl nitrogen and/or phosphorus atoms should facilitate the discovery of unprecedented utility for phosphine imides. Herein, we have designed and prepared a novel class of phosphine imides known as N -borane-substituted cyclic phosphine imides (BCPIs). Experimental and theoretical analyses of the electronic structure of BCPIs demonstrate the existence of substantial negative hyperconjugation between the nitrogen and the phosphorus atoms. Given a characteristic nucleophilic/Lewis basic reactivity of BCPIs, we represent the first experimental demonstration that a 5 -oxazaphosphetane species is a key intermediate in the transformation of CO 2 using phosphine imides. Moreover, although it has been previously considered unlikely, the spontaneous heterolysis of a B ‒ Cl bond in a BCPI-coordinated chloroborane has been directly observed, suggesting that such process is a plausible key step in the Lewis acid-promoted generation of borenium species from chloroboranes. These results thus provide evidence of two species that have been missing in contemporary organic chemistry. Graphical Abstract\",\"PeriodicalId\":9511,\"journal\":{\"name\":\"Bulletin of the Chemical Society of Japan\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Chemical Society of Japan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1246/bcsj.20230228\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Chemical Society of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1246/bcsj.20230228","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Phosphine imides are ubiquitous nucleophiles/Lewis bases in modern organic chemistry. The introduction of unexplored substituents on the phosphine imidoyl nitrogen and/or phosphorus atoms should facilitate the discovery of unprecedented utility for phosphine imides. Herein, we have designed and prepared a novel class of phosphine imides known as N -borane-substituted cyclic phosphine imides (BCPIs). Experimental and theoretical analyses of the electronic structure of BCPIs demonstrate the existence of substantial negative hyperconjugation between the nitrogen and the phosphorus atoms. Given a characteristic nucleophilic/Lewis basic reactivity of BCPIs, we represent the first experimental demonstration that a 5 -oxazaphosphetane species is a key intermediate in the transformation of CO 2 using phosphine imides. Moreover, although it has been previously considered unlikely, the spontaneous heterolysis of a B ‒ Cl bond in a BCPI-coordinated chloroborane has been directly observed, suggesting that such process is a plausible key step in the Lewis acid-promoted generation of borenium species from chloroboranes. These results thus provide evidence of two species that have been missing in contemporary organic chemistry. Graphical Abstract
期刊介绍:
The Bulletin of the Chemical Society of Japan (BCSJ) is devoted to the publication of scientific research papers in the fields of Theoretical and Physical Chemistry, Analytical and Inorganic Chemistry, Organic and Biological Chemistry, and Applied and Materials Chemistry. BCSJ appears as a monthly journal online and in advance with three kinds of papers (Accounts, Articles, and Short Articles) describing original research. The purpose of BCSJ is to select and publish the most important papers with the broadest significance to the chemistry community in general. The Chemical Society of Japan hopes all visitors will notice the usefulness of our journal and the abundance of topics, and welcomes more submissions from scientists all over the world.