{"title":"随机化算法的一个新的极大极小定理","authors":"Shalev Ben-David, Eric Blais","doi":"10.1145/3626514","DOIUrl":null,"url":null,"abstract":"The celebrated minimax principle of Yao (1977) says that for any Boolean-valued function f with finite domain, there is a distribution μ over the domain of f such that computing f to error ϵ against inputs from μ is just as hard as computing f to error ϵ on worst-case inputs. Notably, however, the distribution μ depends on the target error level ϵ: the hard distribution which is tight for bounded error might be trivial to solve to small bias, and the hard distribution which is tight for a small bias level might be far from tight for bounded error levels. In this work, we introduce a new type of minimax theorem which can provide a hard distribution μ that works for all bias levels at once. We show that this works for randomized query complexity, randomized communication complexity, some randomized circuit models, quantum query and communication complexities, approximate polynomial degree, and approximate logrank. We also prove an improved version of Impagliazzo’s hardcore lemma. Our proofs rely on two innovations over the classical approach of using Von Neumann’s minimax theorem or linear programming duality. First, we use Sion’s minimax theorem to prove a minimax theorem for ratios of bilinear functions representing the cost and score of algorithms. Second, we introduce a new way to analyze low-bias randomized algorithms by viewing them as “forecasting algorithms” evaluated by a certain proper scoring rule. The expected score of the forecasting version of a randomized algorithm appears to be a more fine-grained way of analyzing the bias of the algorithm. We show that such expected scores have many elegant mathematical properties: for example, they can be amplified linearly instead of quadratically. We anticipate forecasting algorithms will find use in future work in which a fine-grained analysis of small-bias algorithms is required.","PeriodicalId":50022,"journal":{"name":"Journal of the ACM","volume":"12 2 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A New Minimax Theorem for Randomized Algorithms\",\"authors\":\"Shalev Ben-David, Eric Blais\",\"doi\":\"10.1145/3626514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The celebrated minimax principle of Yao (1977) says that for any Boolean-valued function f with finite domain, there is a distribution μ over the domain of f such that computing f to error ϵ against inputs from μ is just as hard as computing f to error ϵ on worst-case inputs. Notably, however, the distribution μ depends on the target error level ϵ: the hard distribution which is tight for bounded error might be trivial to solve to small bias, and the hard distribution which is tight for a small bias level might be far from tight for bounded error levels. In this work, we introduce a new type of minimax theorem which can provide a hard distribution μ that works for all bias levels at once. We show that this works for randomized query complexity, randomized communication complexity, some randomized circuit models, quantum query and communication complexities, approximate polynomial degree, and approximate logrank. We also prove an improved version of Impagliazzo’s hardcore lemma. Our proofs rely on two innovations over the classical approach of using Von Neumann’s minimax theorem or linear programming duality. First, we use Sion’s minimax theorem to prove a minimax theorem for ratios of bilinear functions representing the cost and score of algorithms. Second, we introduce a new way to analyze low-bias randomized algorithms by viewing them as “forecasting algorithms” evaluated by a certain proper scoring rule. The expected score of the forecasting version of a randomized algorithm appears to be a more fine-grained way of analyzing the bias of the algorithm. We show that such expected scores have many elegant mathematical properties: for example, they can be amplified linearly instead of quadratically. We anticipate forecasting algorithms will find use in future work in which a fine-grained analysis of small-bias algorithms is required.\",\"PeriodicalId\":50022,\"journal\":{\"name\":\"Journal of the ACM\",\"volume\":\"12 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the ACM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3626514\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the ACM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3626514","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
The celebrated minimax principle of Yao (1977) says that for any Boolean-valued function f with finite domain, there is a distribution μ over the domain of f such that computing f to error ϵ against inputs from μ is just as hard as computing f to error ϵ on worst-case inputs. Notably, however, the distribution μ depends on the target error level ϵ: the hard distribution which is tight for bounded error might be trivial to solve to small bias, and the hard distribution which is tight for a small bias level might be far from tight for bounded error levels. In this work, we introduce a new type of minimax theorem which can provide a hard distribution μ that works for all bias levels at once. We show that this works for randomized query complexity, randomized communication complexity, some randomized circuit models, quantum query and communication complexities, approximate polynomial degree, and approximate logrank. We also prove an improved version of Impagliazzo’s hardcore lemma. Our proofs rely on two innovations over the classical approach of using Von Neumann’s minimax theorem or linear programming duality. First, we use Sion’s minimax theorem to prove a minimax theorem for ratios of bilinear functions representing the cost and score of algorithms. Second, we introduce a new way to analyze low-bias randomized algorithms by viewing them as “forecasting algorithms” evaluated by a certain proper scoring rule. The expected score of the forecasting version of a randomized algorithm appears to be a more fine-grained way of analyzing the bias of the algorithm. We show that such expected scores have many elegant mathematical properties: for example, they can be amplified linearly instead of quadratically. We anticipate forecasting algorithms will find use in future work in which a fine-grained analysis of small-bias algorithms is required.
期刊介绍:
The best indicator of the scope of the journal is provided by the areas covered by its Editorial Board. These areas change from time to time, as the field evolves. The following areas are currently covered by a member of the Editorial Board: Algorithms and Combinatorial Optimization; Algorithms and Data Structures; Algorithms, Combinatorial Optimization, and Games; Artificial Intelligence; Complexity Theory; Computational Biology; Computational Geometry; Computer Graphics and Computer Vision; Computer-Aided Verification; Cryptography and Security; Cyber-Physical, Embedded, and Real-Time Systems; Database Systems and Theory; Distributed Computing; Economics and Computation; Information Theory; Logic and Computation; Logic, Algorithms, and Complexity; Machine Learning and Computational Learning Theory; Networking; Parallel Computing and Architecture; Programming Languages; Quantum Computing; Randomized Algorithms and Probabilistic Analysis of Algorithms; Scientific Computing and High Performance Computing; Software Engineering; Web Algorithms and Data Mining