闭环ACAS Xu神经网络验证

Sanaz Sheikhi, Stanley Bak
{"title":"闭环ACAS Xu神经网络验证","authors":"Sanaz Sheikhi, Stanley Bak","doi":"10.29007/vf8z","DOIUrl":null,"url":null,"abstract":"Benchmark Proposal: Neural Network Control Systems (NNCS) play critical roles in autonomy. However, verifying their correctness is a substantial challenge. In this paper, we consider the neural network compression of ACAS Xu, a popular benchmark usually considered for open-loop neural network verification. ACAS Xu is an air-to-air collision avoidance system for unmanned aircraft issuing horizontal turn advisories to avoid collision with an intruder aircraft. We propose specific properties and different system assumptions to use this system as a closed-loop NNCS benchmark. We present experimental results for our properties based on randomly generated test cases and provide simulation code.","PeriodicalId":93549,"journal":{"name":"EPiC series in computing","volume":"33 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Closed-Loop ACAS Xu Neural Network Verification\",\"authors\":\"Sanaz Sheikhi, Stanley Bak\",\"doi\":\"10.29007/vf8z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Benchmark Proposal: Neural Network Control Systems (NNCS) play critical roles in autonomy. However, verifying their correctness is a substantial challenge. In this paper, we consider the neural network compression of ACAS Xu, a popular benchmark usually considered for open-loop neural network verification. ACAS Xu is an air-to-air collision avoidance system for unmanned aircraft issuing horizontal turn advisories to avoid collision with an intruder aircraft. We propose specific properties and different system assumptions to use this system as a closed-loop NNCS benchmark. We present experimental results for our properties based on randomly generated test cases and provide simulation code.\",\"PeriodicalId\":93549,\"journal\":{\"name\":\"EPiC series in computing\",\"volume\":\"33 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPiC series in computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29007/vf8z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPiC series in computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29007/vf8z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基准建议:神经网络控制系统(NNCS)在自动驾驶中起着至关重要的作用。然而,验证它们的正确性是一个巨大的挑战。在本文中,我们考虑了ACAS Xu的神经网络压缩,这是一种常用的开环神经网络验证基准。ACAS Xu是一种空对空避碰系统,用于无人驾驶飞机发出水平转弯通知,以避免与入侵飞机相撞。我们提出了特定的性质和不同的系统假设,以使用该系统作为闭环nnc基准。我们给出了基于随机生成的测试用例的属性的实验结果,并提供了仿真代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Closed-Loop ACAS Xu Neural Network Verification
Benchmark Proposal: Neural Network Control Systems (NNCS) play critical roles in autonomy. However, verifying their correctness is a substantial challenge. In this paper, we consider the neural network compression of ACAS Xu, a popular benchmark usually considered for open-loop neural network verification. ACAS Xu is an air-to-air collision avoidance system for unmanned aircraft issuing horizontal turn advisories to avoid collision with an intruder aircraft. We propose specific properties and different system assumptions to use this system as a closed-loop NNCS benchmark. We present experimental results for our properties based on randomly generated test cases and provide simulation code.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
ARCH-COMP23 Category Report: Hybrid Systems Theorem Proving ARCH-COMP23 Category Report: Continuous and Hybrid Systems with Linear Continuous Dynamics ARCH-COMP23 Category Report: Continuous and Hybrid Systems with Nonlinear Dynamics ARCH-COMP23 Repeatability Evaluation Report ARCH-COMP23 Category Report: Artificial Intelligence and Neural Network Control Systems (AINNCS) for Continuous and Hybrid Systems Plants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1