{"title":"基于日志模板提取的智能日志异常检测框架","authors":"Lei Pan, Huichang Zhu","doi":"10.4018/jcit.330145","DOIUrl":null,"url":null,"abstract":"Log anomaly detection holds great significance in computer systems and network security. A large amount of log data is generated in the background of various information systems and equipment, so automated methods are required to identify abnormal behavior that may indicate security threats or system malfunctions. The traditional anomaly detection methods usually rely on manual statistical discovery, or match by regular expression which are complex and time-consuming. To prevent system failures, minimize troubleshooting time, and reduce service interruptions, a log template-based anomaly detection method has been proposed in this context. This approach leverages log template extraction, log clustering, and classification technology to timely detect abnormal events within the information system. The effectiveness of this method has been thoroughly tested and compared against traditional log anomaly detection systems. The results demonstrate improvements in log analysis depth, event recognition accuracy, and overall efficiency.","PeriodicalId":43384,"journal":{"name":"Journal of Cases on Information Technology","volume":"24 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Intelligent Framework for Log Anomaly Detection Based on Log Template Extraction\",\"authors\":\"Lei Pan, Huichang Zhu\",\"doi\":\"10.4018/jcit.330145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Log anomaly detection holds great significance in computer systems and network security. A large amount of log data is generated in the background of various information systems and equipment, so automated methods are required to identify abnormal behavior that may indicate security threats or system malfunctions. The traditional anomaly detection methods usually rely on manual statistical discovery, or match by regular expression which are complex and time-consuming. To prevent system failures, minimize troubleshooting time, and reduce service interruptions, a log template-based anomaly detection method has been proposed in this context. This approach leverages log template extraction, log clustering, and classification technology to timely detect abnormal events within the information system. The effectiveness of this method has been thoroughly tested and compared against traditional log anomaly detection systems. The results demonstrate improvements in log analysis depth, event recognition accuracy, and overall efficiency.\",\"PeriodicalId\":43384,\"journal\":{\"name\":\"Journal of Cases on Information Technology\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cases on Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/jcit.330145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cases on Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jcit.330145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
An Intelligent Framework for Log Anomaly Detection Based on Log Template Extraction
Log anomaly detection holds great significance in computer systems and network security. A large amount of log data is generated in the background of various information systems and equipment, so automated methods are required to identify abnormal behavior that may indicate security threats or system malfunctions. The traditional anomaly detection methods usually rely on manual statistical discovery, or match by regular expression which are complex and time-consuming. To prevent system failures, minimize troubleshooting time, and reduce service interruptions, a log template-based anomaly detection method has been proposed in this context. This approach leverages log template extraction, log clustering, and classification technology to timely detect abnormal events within the information system. The effectiveness of this method has been thoroughly tested and compared against traditional log anomaly detection systems. The results demonstrate improvements in log analysis depth, event recognition accuracy, and overall efficiency.
期刊介绍:
JCIT documents comprehensive, real-life cases based on individual, organizational and societal experiences related to the utilization and management of information technology. Cases published in JCIT deal with a wide variety of organizations such as businesses, government organizations, educational institutions, libraries, non-profit organizations. Additionally, cases published in JCIT report not only successful utilization of IT applications, but also failures and mismanagement of IT resources and applications.