{"title":"深度克罗内克网络","authors":"Long Feng, Guang Yang","doi":"10.1093/biomet/asad049","DOIUrl":null,"url":null,"abstract":"Summary We develop a novel framework named Deep Kronecker Network for the analysis of medical imaging data, including magnetic resonance imaging (MRI), functional MRI, computed tomography, and more. Medical imaging data differs from general images in two main aspects: i) the sample size is often considerably smaller, and ii) the interpretation of the model is usually more crucial than predicting the outcome. As a result, standard methods such as convolutional neural networks cannot be directly applied to medical imaging analysis. Therefore, we propose the Deep Kronecker Network, which can adapt to the low sample size constraint and offer the desired model interpretation. Our approach is versatile, as it works for both matrix and tensor represented image data and can be applied to discrete and continuous outcomes. The Deep Kronecker network is built upon a Kronecker product structure, which implicitly enforces a piecewise smooth property on coefficients. Moreover, our approach resembles a fully convolutional network as the Kronecker structure can be expressed in a convolutional form. Interestingly, our approach also has strong connections to the tensor regression framework proposed by Zhou et al. (2013), which imposes a canonical low-rank structure on tensor coefficients. We conduct both classification and regression analyses using real MRI data from the Alzheimer’s Disease Neuroimaging Initiative to demonstrate the effectiveness of our approach.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":"37 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Kronecker Network\",\"authors\":\"Long Feng, Guang Yang\",\"doi\":\"10.1093/biomet/asad049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary We develop a novel framework named Deep Kronecker Network for the analysis of medical imaging data, including magnetic resonance imaging (MRI), functional MRI, computed tomography, and more. Medical imaging data differs from general images in two main aspects: i) the sample size is often considerably smaller, and ii) the interpretation of the model is usually more crucial than predicting the outcome. As a result, standard methods such as convolutional neural networks cannot be directly applied to medical imaging analysis. Therefore, we propose the Deep Kronecker Network, which can adapt to the low sample size constraint and offer the desired model interpretation. Our approach is versatile, as it works for both matrix and tensor represented image data and can be applied to discrete and continuous outcomes. The Deep Kronecker network is built upon a Kronecker product structure, which implicitly enforces a piecewise smooth property on coefficients. Moreover, our approach resembles a fully convolutional network as the Kronecker structure can be expressed in a convolutional form. Interestingly, our approach also has strong connections to the tensor regression framework proposed by Zhou et al. (2013), which imposes a canonical low-rank structure on tensor coefficients. We conduct both classification and regression analyses using real MRI data from the Alzheimer’s Disease Neuroimaging Initiative to demonstrate the effectiveness of our approach.\",\"PeriodicalId\":9001,\"journal\":{\"name\":\"Biometrika\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/biomet/asad049\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/biomet/asad049","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Summary We develop a novel framework named Deep Kronecker Network for the analysis of medical imaging data, including magnetic resonance imaging (MRI), functional MRI, computed tomography, and more. Medical imaging data differs from general images in two main aspects: i) the sample size is often considerably smaller, and ii) the interpretation of the model is usually more crucial than predicting the outcome. As a result, standard methods such as convolutional neural networks cannot be directly applied to medical imaging analysis. Therefore, we propose the Deep Kronecker Network, which can adapt to the low sample size constraint and offer the desired model interpretation. Our approach is versatile, as it works for both matrix and tensor represented image data and can be applied to discrete and continuous outcomes. The Deep Kronecker network is built upon a Kronecker product structure, which implicitly enforces a piecewise smooth property on coefficients. Moreover, our approach resembles a fully convolutional network as the Kronecker structure can be expressed in a convolutional form. Interestingly, our approach also has strong connections to the tensor regression framework proposed by Zhou et al. (2013), which imposes a canonical low-rank structure on tensor coefficients. We conduct both classification and regression analyses using real MRI data from the Alzheimer’s Disease Neuroimaging Initiative to demonstrate the effectiveness of our approach.
期刊介绍:
Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.