A. Písaříková, J. Olejníček, I. Venkrbcová, L. Nožka, S. Cichoň, A. Azinfar, R. Hippler, C. A. Helm, M. Mašláň, L. Machala, Z. Hubička
{"title":"电子回旋波共振辅助反应性HiPIMS双磁控管和射频磁控溅射制备CuFeO2","authors":"A. Písaříková, J. Olejníček, I. Venkrbcová, L. Nožka, S. Cichoň, A. Azinfar, R. Hippler, C. A. Helm, M. Mašláň, L. Machala, Z. Hubička","doi":"10.1116/6.0002902","DOIUrl":null,"url":null,"abstract":"In this study, thin films of CuFeO2 were prepared using radio frequency reactive sputtering (RF) and reactive high-power impulse magnetron sputtering combined with electron cyclotron wave resonance plasma (HiPIMS-ECWR). The plasma was characterized using an RF ion probe. Plasma density, tail electron energy, and electron temperature were extracted from the measured data. The films were deposited on fluorine-doped tin oxide-coated glass and quartz glass, with the substrates being heated during the deposition process. The final delafossite CuFeO2 structure was formed after annealing in an argon gas flow at 550–600 °C. The ideal deposition conditions were found to be with a stoichiometric ratio of Cu:Fe = 1:1, which was the optimal condition for creating the delafossite CuFeO2 structure. The measured optical bandgap of CuFeO2 was 1.4 eV. The deposited CuFeO2 films were subjected to photoelectrochemical measurements in the cathodic region to investigate their potential application in solar photocatalytic water splitting. The films showed photocatalytic activity, with a photocurrent density of around 70 μA/cm2 (under an incident light irradiation of 62 mW/cm2, AM 1.5 G). The electrochemical properties of the layers were studied using open circuit potential, linear voltammetry, and chronoamperometry. The surface morphology and chemical composition of the layers were analyzed by atomic force microscopy and energy-dispersive x-ray spectroscopy, respectively. The crystalline structure was determined using XRD and Raman spectroscopy. The results of these methods are presented and discussed in this article.","PeriodicalId":17490,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CuFeO2 prepared by electron cyclotron wave resonance-assisted reactive HiPIMS with two magnetrons and radio frequency magnetron sputtering\",\"authors\":\"A. Písaříková, J. Olejníček, I. Venkrbcová, L. Nožka, S. Cichoň, A. Azinfar, R. Hippler, C. A. Helm, M. Mašláň, L. Machala, Z. Hubička\",\"doi\":\"10.1116/6.0002902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, thin films of CuFeO2 were prepared using radio frequency reactive sputtering (RF) and reactive high-power impulse magnetron sputtering combined with electron cyclotron wave resonance plasma (HiPIMS-ECWR). The plasma was characterized using an RF ion probe. Plasma density, tail electron energy, and electron temperature were extracted from the measured data. The films were deposited on fluorine-doped tin oxide-coated glass and quartz glass, with the substrates being heated during the deposition process. The final delafossite CuFeO2 structure was formed after annealing in an argon gas flow at 550–600 °C. The ideal deposition conditions were found to be with a stoichiometric ratio of Cu:Fe = 1:1, which was the optimal condition for creating the delafossite CuFeO2 structure. The measured optical bandgap of CuFeO2 was 1.4 eV. The deposited CuFeO2 films were subjected to photoelectrochemical measurements in the cathodic region to investigate their potential application in solar photocatalytic water splitting. The films showed photocatalytic activity, with a photocurrent density of around 70 μA/cm2 (under an incident light irradiation of 62 mW/cm2, AM 1.5 G). The electrochemical properties of the layers were studied using open circuit potential, linear voltammetry, and chronoamperometry. The surface morphology and chemical composition of the layers were analyzed by atomic force microscopy and energy-dispersive x-ray spectroscopy, respectively. The crystalline structure was determined using XRD and Raman spectroscopy. The results of these methods are presented and discussed in this article.\",\"PeriodicalId\":17490,\"journal\":{\"name\":\"Journal of Vacuum Science & Technology A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vacuum Science & Technology A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0002902\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0002902","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
CuFeO2 prepared by electron cyclotron wave resonance-assisted reactive HiPIMS with two magnetrons and radio frequency magnetron sputtering
In this study, thin films of CuFeO2 were prepared using radio frequency reactive sputtering (RF) and reactive high-power impulse magnetron sputtering combined with electron cyclotron wave resonance plasma (HiPIMS-ECWR). The plasma was characterized using an RF ion probe. Plasma density, tail electron energy, and electron temperature were extracted from the measured data. The films were deposited on fluorine-doped tin oxide-coated glass and quartz glass, with the substrates being heated during the deposition process. The final delafossite CuFeO2 structure was formed after annealing in an argon gas flow at 550–600 °C. The ideal deposition conditions were found to be with a stoichiometric ratio of Cu:Fe = 1:1, which was the optimal condition for creating the delafossite CuFeO2 structure. The measured optical bandgap of CuFeO2 was 1.4 eV. The deposited CuFeO2 films were subjected to photoelectrochemical measurements in the cathodic region to investigate their potential application in solar photocatalytic water splitting. The films showed photocatalytic activity, with a photocurrent density of around 70 μA/cm2 (under an incident light irradiation of 62 mW/cm2, AM 1.5 G). The electrochemical properties of the layers were studied using open circuit potential, linear voltammetry, and chronoamperometry. The surface morphology and chemical composition of the layers were analyzed by atomic force microscopy and energy-dispersive x-ray spectroscopy, respectively. The crystalline structure was determined using XRD and Raman spectroscopy. The results of these methods are presented and discussed in this article.
期刊介绍:
Journal of Vacuum Science & Technology A publishes reports of original research, letters, and review articles that focus on fundamental scientific understanding of interfaces, surfaces, plasmas and thin films and on using this understanding to advance the state-of-the-art in various technological applications.