Tianyu Zhu, Dong Qian, Tong Duan, Jinlan Li, Hui Yu, Weizhou Huang, Yi Zhou, Zhen Zhang, Jie Sun
{"title":"从贲门醇、二氧化碳和氨基酸中提取的氨基甲酸酯功能生物基表面活性剂:其合成与特性","authors":"Tianyu Zhu, Dong Qian, Tong Duan, Jinlan Li, Hui Yu, Weizhou Huang, Yi Zhou, Zhen Zhang, Jie Sun","doi":"10.1002/jsde.12707","DOIUrl":null,"url":null,"abstract":"<p>Three biobased, CO<sub>2</sub>-consuming, and carbamate-groups-containing surfactants (CC-G, CC-T, CC-L) were synthesized separately by combination of Cardanol, CO<sub>2</sub>, Glycine sodium salt (G), Taurine sodium salt (T), and Lysine sodium salt (L). The chemical structures of CC-G, CC-T, CC-L were confirmed by <sup>1</sup>H NMR and IR spectra. Thermal properties of these surfactants were studied with TGA and DSC. Their critical micelle concentration (CMC) and surface tension at CMC (<math>\n <mrow>\n <mi>Υ</mi>\n </mrow></math><sub>CMC</sub>) in aqueous solution were obtained by surface tension and conductivity methods, respectively. The amount of excess concentration (<math>\n <mrow>\n <msub>\n <mi>Γ</mi>\n <mi>max</mi>\n </msub>\n </mrow></math>) and the average occupied surface area (<math>\n <mrow>\n <msub>\n <mi>A</mi>\n <mi>min</mi>\n </msub>\n </mrow></math>) of three surfactants were calculated. <math>\n <mrow>\n <msub>\n <mi>Γ</mi>\n <mi>max</mi>\n </msub>\n </mrow></math> of CC-G, CC-T and CC-L was 2.35 × 10<sup>−7</sup> mmol/m<sup>2</sup>, 2.23 × 10<sup>−7</sup> mmol/m<sup>2</sup>, and 6.16 × 10<sup>−7</sup> mmol/m<sup>2</sup>, separately. <math>\n <mrow>\n <msub>\n <mi>A</mi>\n <mi>min</mi>\n </msub>\n </mrow></math> of CC-G was 0.71 nm<sup>2</sup>/mmol, CC-T 0.74 nm<sup>2</sup>/mmol, CC-L 2.70 nm<sup>2</sup>/mmol. The Krafft point, emulsification, and foaming power of these surfactants were investigated as well. The Krafft points were 0°C (CC-G), 5°C (CC-T) and 20°C (CC-T). For CC-G, the separation time of 10 mL double distilled water (DDW) was 43 min, CC-T 40 min, and CC-L 37 min. It was inferred from the calculated packing parameters that shape of the micelle of CC-G, CC-T were cylindrical in aqueous media, while CC-L was spheroidal in aqueous media.</p>","PeriodicalId":17083,"journal":{"name":"Journal of Surfactants and Detergents","volume":"27 1","pages":"103-113"},"PeriodicalIF":1.6000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbamate-functional, biobased surfactants derived from cardanol, carbon dioxide, and amino acids: Their synthesis and properties\",\"authors\":\"Tianyu Zhu, Dong Qian, Tong Duan, Jinlan Li, Hui Yu, Weizhou Huang, Yi Zhou, Zhen Zhang, Jie Sun\",\"doi\":\"10.1002/jsde.12707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Three biobased, CO<sub>2</sub>-consuming, and carbamate-groups-containing surfactants (CC-G, CC-T, CC-L) were synthesized separately by combination of Cardanol, CO<sub>2</sub>, Glycine sodium salt (G), Taurine sodium salt (T), and Lysine sodium salt (L). The chemical structures of CC-G, CC-T, CC-L were confirmed by <sup>1</sup>H NMR and IR spectra. Thermal properties of these surfactants were studied with TGA and DSC. Their critical micelle concentration (CMC) and surface tension at CMC (<math>\\n <mrow>\\n <mi>Υ</mi>\\n </mrow></math><sub>CMC</sub>) in aqueous solution were obtained by surface tension and conductivity methods, respectively. The amount of excess concentration (<math>\\n <mrow>\\n <msub>\\n <mi>Γ</mi>\\n <mi>max</mi>\\n </msub>\\n </mrow></math>) and the average occupied surface area (<math>\\n <mrow>\\n <msub>\\n <mi>A</mi>\\n <mi>min</mi>\\n </msub>\\n </mrow></math>) of three surfactants were calculated. <math>\\n <mrow>\\n <msub>\\n <mi>Γ</mi>\\n <mi>max</mi>\\n </msub>\\n </mrow></math> of CC-G, CC-T and CC-L was 2.35 × 10<sup>−7</sup> mmol/m<sup>2</sup>, 2.23 × 10<sup>−7</sup> mmol/m<sup>2</sup>, and 6.16 × 10<sup>−7</sup> mmol/m<sup>2</sup>, separately. <math>\\n <mrow>\\n <msub>\\n <mi>A</mi>\\n <mi>min</mi>\\n </msub>\\n </mrow></math> of CC-G was 0.71 nm<sup>2</sup>/mmol, CC-T 0.74 nm<sup>2</sup>/mmol, CC-L 2.70 nm<sup>2</sup>/mmol. The Krafft point, emulsification, and foaming power of these surfactants were investigated as well. The Krafft points were 0°C (CC-G), 5°C (CC-T) and 20°C (CC-T). For CC-G, the separation time of 10 mL double distilled water (DDW) was 43 min, CC-T 40 min, and CC-L 37 min. It was inferred from the calculated packing parameters that shape of the micelle of CC-G, CC-T were cylindrical in aqueous media, while CC-L was spheroidal in aqueous media.</p>\",\"PeriodicalId\":17083,\"journal\":{\"name\":\"Journal of Surfactants and Detergents\",\"volume\":\"27 1\",\"pages\":\"103-113\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Surfactants and Detergents\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jsde.12707\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Surfactants and Detergents","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jsde.12707","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Carbamate-functional, biobased surfactants derived from cardanol, carbon dioxide, and amino acids: Their synthesis and properties
Three biobased, CO2-consuming, and carbamate-groups-containing surfactants (CC-G, CC-T, CC-L) were synthesized separately by combination of Cardanol, CO2, Glycine sodium salt (G), Taurine sodium salt (T), and Lysine sodium salt (L). The chemical structures of CC-G, CC-T, CC-L were confirmed by 1H NMR and IR spectra. Thermal properties of these surfactants were studied with TGA and DSC. Their critical micelle concentration (CMC) and surface tension at CMC (CMC) in aqueous solution were obtained by surface tension and conductivity methods, respectively. The amount of excess concentration () and the average occupied surface area () of three surfactants were calculated. of CC-G, CC-T and CC-L was 2.35 × 10−7 mmol/m2, 2.23 × 10−7 mmol/m2, and 6.16 × 10−7 mmol/m2, separately. of CC-G was 0.71 nm2/mmol, CC-T 0.74 nm2/mmol, CC-L 2.70 nm2/mmol. The Krafft point, emulsification, and foaming power of these surfactants were investigated as well. The Krafft points were 0°C (CC-G), 5°C (CC-T) and 20°C (CC-T). For CC-G, the separation time of 10 mL double distilled water (DDW) was 43 min, CC-T 40 min, and CC-L 37 min. It was inferred from the calculated packing parameters that shape of the micelle of CC-G, CC-T were cylindrical in aqueous media, while CC-L was spheroidal in aqueous media.
期刊介绍:
Journal of Surfactants and Detergents, a journal of the American Oil Chemists’ Society (AOCS) publishes scientific contributions in the surfactants and detergents area. This includes the basic and applied science of petrochemical and oleochemical surfactants, the development and performance of surfactants in all applications, as well as the development and manufacture of detergent ingredients and their formulation into finished products.