区块链为安全的物联网框架管理联邦学习

IF 2.3 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC EURASIP Journal on Wireless Communications and Networking Pub Date : 2023-10-02 DOI:10.1186/s13638-023-02311-x
Jiayong Chai, Jian Li, Muhua Wei, Chuangying Zhu
{"title":"区块链为安全的物联网框架管理联邦学习","authors":"Jiayong Chai, Jian Li, Muhua Wei, Chuangying Zhu","doi":"10.1186/s13638-023-02311-x","DOIUrl":null,"url":null,"abstract":"Abstract In this work, we present a blockchain-based federated learning (FL) framework that aims achieving high system efficiency while simultaneously addressing issues relating to data sparsity and the disclosure of private information. It is more efficient to build a number of smaller clusters rather than one big cluster for multiple networks. Blockchain-based FL is carried out in each cluster, with the model changes being compiled at the end of the process. Following that, the accumulated updates are swapped across the clusters, which, in practise, improves the updates that are accessible for each cluster. When compared to the extensive interactions that take place in blockchain-based FL, cluster-based FL only sends a limited number of aggregated updates across a substantial distance. This is in contrast to the extensive interactions that take place in blockchain-based FL. In order to conduct an analysis of our system, we have implemented the prototypes of both cluster and blockchain-based FL models. The findings of the experiments show that cluster-based FL model raise the accuracy goes upto 72.6%, and goes down to 11%. The loss goes upto 3.6 and goes down to 0.8. In addition, cluster-based FL model has the potential to hasten the convergence of the model, provided that the same quantity of data is input into it. The reason for this is due to the fact that during a training cycle, cluster-based FL model combines the computational resources of many different clusters.","PeriodicalId":12040,"journal":{"name":"EURASIP Journal on Wireless Communications and Networking","volume":"14 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blockchain managed federated learning for a secure IoT framework\",\"authors\":\"Jiayong Chai, Jian Li, Muhua Wei, Chuangying Zhu\",\"doi\":\"10.1186/s13638-023-02311-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this work, we present a blockchain-based federated learning (FL) framework that aims achieving high system efficiency while simultaneously addressing issues relating to data sparsity and the disclosure of private information. It is more efficient to build a number of smaller clusters rather than one big cluster for multiple networks. Blockchain-based FL is carried out in each cluster, with the model changes being compiled at the end of the process. Following that, the accumulated updates are swapped across the clusters, which, in practise, improves the updates that are accessible for each cluster. When compared to the extensive interactions that take place in blockchain-based FL, cluster-based FL only sends a limited number of aggregated updates across a substantial distance. This is in contrast to the extensive interactions that take place in blockchain-based FL. In order to conduct an analysis of our system, we have implemented the prototypes of both cluster and blockchain-based FL models. The findings of the experiments show that cluster-based FL model raise the accuracy goes upto 72.6%, and goes down to 11%. The loss goes upto 3.6 and goes down to 0.8. In addition, cluster-based FL model has the potential to hasten the convergence of the model, provided that the same quantity of data is input into it. The reason for this is due to the fact that during a training cycle, cluster-based FL model combines the computational resources of many different clusters.\",\"PeriodicalId\":12040,\"journal\":{\"name\":\"EURASIP Journal on Wireless Communications and Networking\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURASIP Journal on Wireless Communications and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13638-023-02311-x\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Wireless Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13638-023-02311-x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了一个基于区块链的联邦学习(FL)框架,旨在实现高系统效率,同时解决与数据稀疏性和私有信息披露相关的问题。为多个网络构建许多较小的集群比构建一个大集群更有效。基于区块链的FL在每个集群中进行,在流程结束时编译模型更改。然后,在集群之间交换累积的更新,这实际上改善了每个集群可访问的更新。与基于区块链的FL中发生的广泛交互相比,基于集群的FL仅在相当长的距离内发送有限数量的聚合更新。这与基于区块链的FL中发生的广泛交互形成鲜明对比。为了对我们的系统进行分析,我们实现了集群和基于区块链的FL模型的原型。实验结果表明,基于聚类的FL模型将准确率提高到72.6%,将准确率降低到11%。损失上升到3.6,下降到0.8。此外,在输入相同数量的数据的情况下,基于聚类的FL模型具有加速模型收敛的潜力。这是因为在一个训练周期中,基于聚类的FL模型结合了许多不同聚类的计算资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Blockchain managed federated learning for a secure IoT framework
Abstract In this work, we present a blockchain-based federated learning (FL) framework that aims achieving high system efficiency while simultaneously addressing issues relating to data sparsity and the disclosure of private information. It is more efficient to build a number of smaller clusters rather than one big cluster for multiple networks. Blockchain-based FL is carried out in each cluster, with the model changes being compiled at the end of the process. Following that, the accumulated updates are swapped across the clusters, which, in practise, improves the updates that are accessible for each cluster. When compared to the extensive interactions that take place in blockchain-based FL, cluster-based FL only sends a limited number of aggregated updates across a substantial distance. This is in contrast to the extensive interactions that take place in blockchain-based FL. In order to conduct an analysis of our system, we have implemented the prototypes of both cluster and blockchain-based FL models. The findings of the experiments show that cluster-based FL model raise the accuracy goes upto 72.6%, and goes down to 11%. The loss goes upto 3.6 and goes down to 0.8. In addition, cluster-based FL model has the potential to hasten the convergence of the model, provided that the same quantity of data is input into it. The reason for this is due to the fact that during a training cycle, cluster-based FL model combines the computational resources of many different clusters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
3.80%
发文量
109
审稿时长
8.0 months
期刊介绍: The overall aim of the EURASIP Journal on Wireless Communications and Networking (EURASIP JWCN) is to bring together science and applications of wireless communications and networking technologies with emphasis on signal processing techniques and tools. It is directed at both practicing engineers and academic researchers. EURASIP Journal on Wireless Communications and Networking will highlight the continued growth and new challenges in wireless technology, for both application development and basic research. Articles should emphasize original results relating to the theory and/or applications of wireless communications and networking. Review articles, especially those emphasizing multidisciplinary views of communications and networking, are also welcome. EURASIP Journal on Wireless Communications and Networking employs a paperless, electronic submission and evaluation system to promote a rapid turnaround in the peer-review process. The journal is an Open Access journal since 2004.
期刊最新文献
Anti-jamming for cognitive radio networks with Stackelberg game-assisted DSSS approach A SAR analysis of hexagonal-shaped UWB antenna for healthcare applications Successive interference cancellation with multiple feedback in NOMA-enabled massive IoT network Performance analysis of shared relay CR-NOMA network based on SWIPT Computational offloading into UAV swarm networks: a systematic literature review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1