腔稳定超声速燃烧中火焰闪回与不稳定性的数值分析

Q4 Mathematics 应用数学和力学 Pub Date : 2023-01-01 DOI:10.21656/1000-0887.440103
XIAO Yexin, JIN Tai
{"title":"腔稳定超声速燃烧中火焰闪回与不稳定性的数值分析","authors":"XIAO Yexin, JIN Tai","doi":"10.21656/1000-0887.440103","DOIUrl":null,"url":null,"abstract":"Aimed at the phenomenon of flame flashback and low-frequency combustion oscillation in the scramjet combustor with equal straight cross sections, 3D simulations were conducted, with the hybrid RANS/LES method (delayed detached-eddy simulation, DDES) for turbulence modeling and the partially stirred reactor (PaSR) for turbulence-reaction interactions. The obtained entire combustion oscillation period is consistent with the low-frequency combustion oscillation phenomenon observed in the experiment. The low-frequency combustion oscillation period can be divided into 3 stages: the cavity-holding flame, the flame flashback, and the flame blowout. By analysis of the reacting flow field in different stages of the low-frequency combustion oscillation cycle, the possible formation mechanism of low-frequency combustion oscillations was summarized. The results show that, there is no choking in the combustion chamber during the whole low-frequency combustion oscillation period. The pressure rise induced by shock interaction and the heat released by combustion are the key factors for the formation of low-frequency combustion oscillations in the combustion chamber.","PeriodicalId":8341,"journal":{"name":"应用数学和力学","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Analysis of Flame Flashback and Instability in Cavity-Stabilized Supersonic Combustion\",\"authors\":\"XIAO Yexin, JIN Tai\",\"doi\":\"10.21656/1000-0887.440103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aimed at the phenomenon of flame flashback and low-frequency combustion oscillation in the scramjet combustor with equal straight cross sections, 3D simulations were conducted, with the hybrid RANS/LES method (delayed detached-eddy simulation, DDES) for turbulence modeling and the partially stirred reactor (PaSR) for turbulence-reaction interactions. The obtained entire combustion oscillation period is consistent with the low-frequency combustion oscillation phenomenon observed in the experiment. The low-frequency combustion oscillation period can be divided into 3 stages: the cavity-holding flame, the flame flashback, and the flame blowout. By analysis of the reacting flow field in different stages of the low-frequency combustion oscillation cycle, the possible formation mechanism of low-frequency combustion oscillations was summarized. The results show that, there is no choking in the combustion chamber during the whole low-frequency combustion oscillation period. The pressure rise induced by shock interaction and the heat released by combustion are the key factors for the formation of low-frequency combustion oscillations in the combustion chamber.\",\"PeriodicalId\":8341,\"journal\":{\"name\":\"应用数学和力学\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"应用数学和力学\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21656/1000-0887.440103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"应用数学和力学","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21656/1000-0887.440103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

针对等直截面超燃冲压发动机燃烧室中火焰闪回和低频燃烧振荡现象,采用RANS/LES混合方法(延迟分离涡模拟,DDES)进行湍流模拟,部分搅拌反应器(PaSR)进行湍流-反应相互作用的三维模拟。得到的整个燃烧振荡周期与实验中观察到的低频燃烧振荡现象一致。低频燃烧振荡周期可分为3个阶段:保腔火焰、火焰闪回、火焰喷灭。通过对低频燃烧振荡循环不同阶段的反应流场分析,总结了低频燃烧振荡可能的形成机理。结果表明:在整个低频燃烧振荡周期内,燃烧室内没有发生堵塞现象;激波相互作用引起的压力上升和燃烧释放的热量是燃烧室低频燃烧振荡形成的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical Analysis of Flame Flashback and Instability in Cavity-Stabilized Supersonic Combustion
Aimed at the phenomenon of flame flashback and low-frequency combustion oscillation in the scramjet combustor with equal straight cross sections, 3D simulations were conducted, with the hybrid RANS/LES method (delayed detached-eddy simulation, DDES) for turbulence modeling and the partially stirred reactor (PaSR) for turbulence-reaction interactions. The obtained entire combustion oscillation period is consistent with the low-frequency combustion oscillation phenomenon observed in the experiment. The low-frequency combustion oscillation period can be divided into 3 stages: the cavity-holding flame, the flame flashback, and the flame blowout. By analysis of the reacting flow field in different stages of the low-frequency combustion oscillation cycle, the possible formation mechanism of low-frequency combustion oscillations was summarized. The results show that, there is no choking in the combustion chamber during the whole low-frequency combustion oscillation period. The pressure rise induced by shock interaction and the heat released by combustion are the key factors for the formation of low-frequency combustion oscillations in the combustion chamber.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
应用数学和力学
应用数学和力学 Mathematics-Applied Mathematics
CiteScore
1.20
自引率
0.00%
发文量
6042
期刊介绍: Applied Mathematics and Mechanics was founded in 1980 by CHIEN Wei-zang, a celebrated Chinese scientist in mechanics and mathematics. The current editor in chief is Professor LU Tianjian from Nanjing University of Aeronautics and Astronautics. The Journal was a quarterly in the beginning, a bimonthly the next year, and then a monthly ever since 1985. It carries original research papers on mechanics, mathematical methods in mechanics and interdisciplinary mechanics based on artificial intelligence mathematics. It also strengthens attention to mechanical issues in interdisciplinary fields such as mechanics and information networks, system control, life sciences, ecological sciences, new energy, and new materials, making due contributions to promoting the development of new productive forces.
期刊最新文献
Mass-spring model for elastic wave propagation in multilayered van der Waals metamaterials Reconfigurable mechanism-based metamaterials for ternary-coded elastic wave polarizers and programmable refraction control A theory for three-dimensional response of micropolar plates A low-frequency pure metal metamaterial absorber with continuously tunable stiffness A low-frequency and broadband wave-insulating vibration isolator based on plate-shaped metastructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1