[论文]基于混合空间和深度学习的三维形状分层表示点云压缩

IF 0.5 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC ITE Transactions on Media Technology and Applications Pub Date : 2023-01-01 DOI:10.3169/mta.11.138
Hideaki Kimata
{"title":"[论文]基于混合空间和深度学习的三维形状分层表示点云压缩","authors":"Hideaki Kimata","doi":"10.3169/mta.11.138","DOIUrl":null,"url":null,"abstract":"It is expected that the shapes of real-world objects such as buildings and people can be sensed, stored as point clouds, and utilized. For efficiently storing and transmitting a huge amount of point cloud data, point cloud compression methods based on deep learning have been studied. In order to grasp an overview or details of a desired building or person on a display, it is an important function to extract whole or a desired part of the point cloud from the compressed data and represent the characteristic shape of the object. In this paper, a hybrid point cloud encoding method is proposed, which consists of a layered structuring that presents the main features of the point cloud with various number of points and an efficient block-wise encoding by combining deep learning.","PeriodicalId":41874,"journal":{"name":"ITE Transactions on Media Technology and Applications","volume":"115 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Paper] Hybrid Spatial and Deep Learning-based Point Cloud Compression with Layered Representation on 3D Shape\",\"authors\":\"Hideaki Kimata\",\"doi\":\"10.3169/mta.11.138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is expected that the shapes of real-world objects such as buildings and people can be sensed, stored as point clouds, and utilized. For efficiently storing and transmitting a huge amount of point cloud data, point cloud compression methods based on deep learning have been studied. In order to grasp an overview or details of a desired building or person on a display, it is an important function to extract whole or a desired part of the point cloud from the compressed data and represent the characteristic shape of the object. In this paper, a hybrid point cloud encoding method is proposed, which consists of a layered structuring that presents the main features of the point cloud with various number of points and an efficient block-wise encoding by combining deep learning.\",\"PeriodicalId\":41874,\"journal\":{\"name\":\"ITE Transactions on Media Technology and Applications\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ITE Transactions on Media Technology and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3169/mta.11.138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ITE Transactions on Media Technology and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3169/mta.11.138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

预计,建筑物、人等现实世界物体的形状可以被感知,并以点云的形式存储并加以利用。为了高效存储和传输海量的点云数据,人们研究了基于深度学习的点云压缩方法。为了在显示器上掌握想要的建筑物或人的概貌或细节,从压缩数据中提取整体或部分点云并表示物体的特征形状是一项重要功能。本文提出了一种混合点云编码方法,该方法由一种分层结构和一种结合深度学习的高效分块编码组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[Paper] Hybrid Spatial and Deep Learning-based Point Cloud Compression with Layered Representation on 3D Shape
It is expected that the shapes of real-world objects such as buildings and people can be sensed, stored as point clouds, and utilized. For efficiently storing and transmitting a huge amount of point cloud data, point cloud compression methods based on deep learning have been studied. In order to grasp an overview or details of a desired building or person on a display, it is an important function to extract whole or a desired part of the point cloud from the compressed data and represent the characteristic shape of the object. In this paper, a hybrid point cloud encoding method is proposed, which consists of a layered structuring that presents the main features of the point cloud with various number of points and an efficient block-wise encoding by combining deep learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ITE Transactions on Media Technology and Applications
ITE Transactions on Media Technology and Applications ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
1.70
自引率
0.00%
发文量
9
期刊介绍: ・Multimedia systems and applications ・Multimedia analysis and processing ・Universal services ・Advanced broadcasting media ・Broadcasting network technology ・Contents production ・CG and multimedia representation ・Consumer Electronics ・3D imaging technology ・Human Information ・Image sensing ・Information display ・Multimedia Storage ・Others.
期刊最新文献
[Paper] A 2-Tap 4-Phase Indirect Time-of-Flight Ranging Method using Half-Pulse Modulation for Depth Precision Enhancement and Sub-Frame Operation for Motion Artifact Suppression [Paper] Study on Single Frequency Downlink with Coupling Loop Interference Canceller for Professional SC-FDE Wireless Camera using Millimeter-wave Band [Paper] Memory Bandwidth Constrained Overlapped Block Motion Compensation for Video Coding [Foreword] Welcome to the Special Section on Invited Papers of Media Technology and Applications [Invited Paper] Pressure Change Simulation along Blood Flow in the Left Ventricle and the Aorta
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1