Caitlin Bentley, Chisenga Muyoya, Sara Vannini, Susan Oman, Andrea Jimenez
{"title":"数据的交叉方法:交叉数据科学中清晰思维的重要性","authors":"Caitlin Bentley, Chisenga Muyoya, Sara Vannini, Susan Oman, Andrea Jimenez","doi":"10.1177/20539517231203667","DOIUrl":null,"url":null,"abstract":"Data's increasing role in society and high profile reproduction of inequalities is in tension with traditional methods of using social data for social justice. Alongside this, ‘intersectionality’ has increased in prominence as a critical social theory and praxis to address inequalities. Yet, there is not a comprehensive review of how intersectionality is operationalized in research data practice. In this study, we examined how intersectionality researchers across a range of disciplines conduct intersectional analysis as a means of unpacking how intersectional praxis may advance an intersectional data science agenda. To explore how intersectionality researchers collect and analyze data, we conducted a critical discourse analysis approach in a review of 172 articles that stated using an intersectional approach in some way. We contemplated whether and how Collins’ three frames of relationality were evident in their approach. We found an over-reliance on the additive thinking frame in quantitative research, which poses limits on the potential for this research to address structural inequality. We suggest ways in which intersectional data science could adopt an articulation mindset to improve on this tendency.","PeriodicalId":47834,"journal":{"name":"Big Data & Society","volume":"66 1","pages":"0"},"PeriodicalIF":6.5000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intersectional approaches to data: The importance of an articulation mindset for intersectional data science\",\"authors\":\"Caitlin Bentley, Chisenga Muyoya, Sara Vannini, Susan Oman, Andrea Jimenez\",\"doi\":\"10.1177/20539517231203667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data's increasing role in society and high profile reproduction of inequalities is in tension with traditional methods of using social data for social justice. Alongside this, ‘intersectionality’ has increased in prominence as a critical social theory and praxis to address inequalities. Yet, there is not a comprehensive review of how intersectionality is operationalized in research data practice. In this study, we examined how intersectionality researchers across a range of disciplines conduct intersectional analysis as a means of unpacking how intersectional praxis may advance an intersectional data science agenda. To explore how intersectionality researchers collect and analyze data, we conducted a critical discourse analysis approach in a review of 172 articles that stated using an intersectional approach in some way. We contemplated whether and how Collins’ three frames of relationality were evident in their approach. We found an over-reliance on the additive thinking frame in quantitative research, which poses limits on the potential for this research to address structural inequality. We suggest ways in which intersectional data science could adopt an articulation mindset to improve on this tendency.\",\"PeriodicalId\":47834,\"journal\":{\"name\":\"Big Data & Society\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data & Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/20539517231203667\",\"RegionNum\":1,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL SCIENCES, INTERDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data & Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/20539517231203667","RegionNum":1,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
Intersectional approaches to data: The importance of an articulation mindset for intersectional data science
Data's increasing role in society and high profile reproduction of inequalities is in tension with traditional methods of using social data for social justice. Alongside this, ‘intersectionality’ has increased in prominence as a critical social theory and praxis to address inequalities. Yet, there is not a comprehensive review of how intersectionality is operationalized in research data practice. In this study, we examined how intersectionality researchers across a range of disciplines conduct intersectional analysis as a means of unpacking how intersectional praxis may advance an intersectional data science agenda. To explore how intersectionality researchers collect and analyze data, we conducted a critical discourse analysis approach in a review of 172 articles that stated using an intersectional approach in some way. We contemplated whether and how Collins’ three frames of relationality were evident in their approach. We found an over-reliance on the additive thinking frame in quantitative research, which poses limits on the potential for this research to address structural inequality. We suggest ways in which intersectional data science could adopt an articulation mindset to improve on this tendency.
期刊介绍:
Big Data & Society (BD&S) is an open access, peer-reviewed scholarly journal that publishes interdisciplinary work principally in the social sciences, humanities, and computing and their intersections with the arts and natural sciences. The journal focuses on the implications of Big Data for societies and aims to connect debates about Big Data practices and their effects on various sectors such as academia, social life, industry, business, and government.
BD&S considers Big Data as an emerging field of practices, not solely defined by but generative of unique data qualities such as high volume, granularity, data linking, and mining. The journal pays attention to digital content generated both online and offline, encompassing social media, search engines, closed networks (e.g., commercial or government transactions), and open networks like digital archives, open government, and crowdsourced data. Rather than providing a fixed definition of Big Data, BD&S encourages interdisciplinary inquiries, debates, and studies on various topics and themes related to Big Data practices.
BD&S seeks contributions that analyze Big Data practices, involve empirical engagements and experiments with innovative methods, and reflect on the consequences of these practices for the representation, realization, and governance of societies. As a digital-only journal, BD&S's platform can accommodate multimedia formats such as complex images, dynamic visualizations, videos, and audio content. The contents of the journal encompass peer-reviewed research articles, colloquia, bookcasts, think pieces, state-of-the-art methods, and work by early career researchers.