确定再入太空舱自由落体时的动态稳定性

C. Priyant Mark, Winston Netto
{"title":"确定再入太空舱自由落体时的动态稳定性","authors":"C. Priyant Mark,&nbsp;Winston Netto","doi":"10.1007/s42496-023-00180-7","DOIUrl":null,"url":null,"abstract":"<div><p>Re-entry capsules, designed with blunt-body shapes to endure hypersonic air velocities and heat, encounter instability in the low subsonic regime during the final descent phase. Ensuring a controlled descent with the appropriate attitude for deploying deceleration systems becomes paramount. To address this challenge, we employ a cost-effective approach to investigate the dynamic stability of a typical re-entry capsule in free fall. This study involves formulating the aerodynamic model of the system and hypothesizing associated coefficients. A meticulously designed and instrumented prototype is dynamically scaled and subjected to low altitude drop tests to recreate the desired scenario. Subsequently, the data collected during these tests is processed, and stability derivatives are estimated using system identification techniques. Our research contributes to a deeper understanding of the dynamic stability of re-entry capsules during free fall, shedding light on their behavior and providing insights essential for improving their performance and safety during descent.</p></div>","PeriodicalId":100054,"journal":{"name":"Aerotecnica Missili & Spazio","volume":"103 2","pages":"101 - 116"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determining Dynamic Stability of a Re-entry Capsule at Free Fall\",\"authors\":\"C. Priyant Mark,&nbsp;Winston Netto\",\"doi\":\"10.1007/s42496-023-00180-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Re-entry capsules, designed with blunt-body shapes to endure hypersonic air velocities and heat, encounter instability in the low subsonic regime during the final descent phase. Ensuring a controlled descent with the appropriate attitude for deploying deceleration systems becomes paramount. To address this challenge, we employ a cost-effective approach to investigate the dynamic stability of a typical re-entry capsule in free fall. This study involves formulating the aerodynamic model of the system and hypothesizing associated coefficients. A meticulously designed and instrumented prototype is dynamically scaled and subjected to low altitude drop tests to recreate the desired scenario. Subsequently, the data collected during these tests is processed, and stability derivatives are estimated using system identification techniques. Our research contributes to a deeper understanding of the dynamic stability of re-entry capsules during free fall, shedding light on their behavior and providing insights essential for improving their performance and safety during descent.</p></div>\",\"PeriodicalId\":100054,\"journal\":{\"name\":\"Aerotecnica Missili & Spazio\",\"volume\":\"103 2\",\"pages\":\"101 - 116\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerotecnica Missili & Spazio\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42496-023-00180-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerotecnica Missili & Spazio","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42496-023-00180-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

再入太空舱采用钝体设计,可承受高超音速气流和热量,但在最后下降阶段会遇到低亚音速状态下的不稳定性。确保以适当的姿态进行受控下降以部署减速系统变得至关重要。为了应对这一挑战,我们采用了一种具有成本效益的方法来研究典型返回舱在自由落体状态下的动态稳定性。这项研究包括制定系统的空气动力学模型和假设相关系数。对精心设计和配备仪器的原型进行动态缩放,并进行低空坠落测试,以重现所需的情景。随后,对测试期间收集的数据进行处理,并使用系统识别技术估算稳定性导数。我们的研究有助于加深对重返大气层太空舱在自由落体过程中的动态稳定性的理解,揭示其行为,并为改善其下降过程中的性能和安全性提供必要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Determining Dynamic Stability of a Re-entry Capsule at Free Fall

Re-entry capsules, designed with blunt-body shapes to endure hypersonic air velocities and heat, encounter instability in the low subsonic regime during the final descent phase. Ensuring a controlled descent with the appropriate attitude for deploying deceleration systems becomes paramount. To address this challenge, we employ a cost-effective approach to investigate the dynamic stability of a typical re-entry capsule in free fall. This study involves formulating the aerodynamic model of the system and hypothesizing associated coefficients. A meticulously designed and instrumented prototype is dynamically scaled and subjected to low altitude drop tests to recreate the desired scenario. Subsequently, the data collected during these tests is processed, and stability derivatives are estimated using system identification techniques. Our research contributes to a deeper understanding of the dynamic stability of re-entry capsules during free fall, shedding light on their behavior and providing insights essential for improving their performance and safety during descent.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preface AIDAA News #24 Considerations for a Spaceport in Venezuela: A Developing Country AIDAA News #23 Some Comments About the Quality and Quantity of Papers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1