通过改进的关联策略实现云中的任务调度和数据复制

D Rambabu, A Govardhan
{"title":"通过改进的关联策略实现云中的任务调度和数据复制","authors":"D Rambabu, A Govardhan","doi":"10.1080/1206212x.2023.2267840","DOIUrl":null,"url":null,"abstract":"AbstractCloud providers frequently utilize two tightly coupled resource management strategies like task scheduling & data replication to boost the performance of the system generally, guaranteeing service level agreement (SLA) compliance, as well as protecting their own financial gain. An Improved Correlation strategy-based Task Scheduling and Data Replication in Cloud (ICTSDC) is what this work aims to give. The suggested system's primary phases are as follows: Management of replication and task scheduling. Initial job scheduling will be optimization-based and take into account goals such bottleneck value, migration cost, VM load, enhanced correlation, and replication, respectively. For this, a brand-new extended DMO algorithm called Self-adaptive Dwarf Mongoose Optimization (SADMO) is presented. In the replication management stage, the potential copies must first be identified based on the prior objective. The suggested SADMO model implements the optimization technique for replica placement throughout the replication management process. The outcomes of the ICTSDC technique are evaluated to other methods using a variety of metrics, like bottleneck value, migration cost, Virtual Machine (VM) load, improved correlation, as well as replication efficiency. A lower mean value of 0.324 is gained with the ICTSDC scheme for fitness.KEYWORDS: Task schedulingdata replicationcloudimproved correlationoptimization Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":39673,"journal":{"name":"International Journal of Computers and Applications","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Task scheduling and data replication in cloud with improved correlation strategy\",\"authors\":\"D Rambabu, A Govardhan\",\"doi\":\"10.1080/1206212x.2023.2267840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractCloud providers frequently utilize two tightly coupled resource management strategies like task scheduling & data replication to boost the performance of the system generally, guaranteeing service level agreement (SLA) compliance, as well as protecting their own financial gain. An Improved Correlation strategy-based Task Scheduling and Data Replication in Cloud (ICTSDC) is what this work aims to give. The suggested system's primary phases are as follows: Management of replication and task scheduling. Initial job scheduling will be optimization-based and take into account goals such bottleneck value, migration cost, VM load, enhanced correlation, and replication, respectively. For this, a brand-new extended DMO algorithm called Self-adaptive Dwarf Mongoose Optimization (SADMO) is presented. In the replication management stage, the potential copies must first be identified based on the prior objective. The suggested SADMO model implements the optimization technique for replica placement throughout the replication management process. The outcomes of the ICTSDC technique are evaluated to other methods using a variety of metrics, like bottleneck value, migration cost, Virtual Machine (VM) load, improved correlation, as well as replication efficiency. A lower mean value of 0.324 is gained with the ICTSDC scheme for fitness.KEYWORDS: Task schedulingdata replicationcloudimproved correlationoptimization Disclosure statementNo potential conflict of interest was reported by the author(s).\",\"PeriodicalId\":39673,\"journal\":{\"name\":\"International Journal of Computers and Applications\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computers and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1206212x.2023.2267840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computers and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1206212x.2023.2267840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

摘要云提供商经常使用两种紧密耦合的资源管理策略,如任务调度和数据复制,以提高系统的性能,保证服务水平协议(SLA)的合规性,并保护自己的经济利益。一种改进的基于关联策略的任务调度和云中的数据复制(ICTSDC)是本研究的目标。建议系统的主要阶段包括:复制管理和任务调度。初始作业调度将基于优化,并分别考虑瓶颈值、迁移成本、VM负载、增强的相关性和复制等目标。为此,提出了一种全新的扩展DMO算法——自适应矮猫鼬优化算法(SADMO)。在复制管理阶段,必须首先根据先前的目标确定潜在的副本。建议的SADMO模型在整个复制管理过程中实现了副本放置的优化技术。使用瓶颈值、迁移成本、虚拟机(VM)负载、改进的相关性以及复制效率等各种指标,对ICTSDC技术的结果进行了评估。ICTSDC方案的适应度均值较低,为0.324。关键词:任务调度数据复制改进相关性优化披露声明作者未报告潜在利益冲突。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Task scheduling and data replication in cloud with improved correlation strategy
AbstractCloud providers frequently utilize two tightly coupled resource management strategies like task scheduling & data replication to boost the performance of the system generally, guaranteeing service level agreement (SLA) compliance, as well as protecting their own financial gain. An Improved Correlation strategy-based Task Scheduling and Data Replication in Cloud (ICTSDC) is what this work aims to give. The suggested system's primary phases are as follows: Management of replication and task scheduling. Initial job scheduling will be optimization-based and take into account goals such bottleneck value, migration cost, VM load, enhanced correlation, and replication, respectively. For this, a brand-new extended DMO algorithm called Self-adaptive Dwarf Mongoose Optimization (SADMO) is presented. In the replication management stage, the potential copies must first be identified based on the prior objective. The suggested SADMO model implements the optimization technique for replica placement throughout the replication management process. The outcomes of the ICTSDC technique are evaluated to other methods using a variety of metrics, like bottleneck value, migration cost, Virtual Machine (VM) load, improved correlation, as well as replication efficiency. A lower mean value of 0.324 is gained with the ICTSDC scheme for fitness.KEYWORDS: Task schedulingdata replicationcloudimproved correlationoptimization Disclosure statementNo potential conflict of interest was reported by the author(s).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computers and Applications
International Journal of Computers and Applications Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
4.70
自引率
0.00%
发文量
20
期刊介绍: The International Journal of Computers and Applications (IJCA) is a unique platform for publishing novel ideas, research outcomes and fundamental advances in all aspects of Computer Science, Computer Engineering, and Computer Applications. This is a peer-reviewed international journal with a vision to provide the academic and industrial community a platform for presenting original research ideas and applications. IJCA welcomes four special types of papers in addition to the regular research papers within its scope: (a) Papers for which all results could be easily reproducible. For such papers, the authors will be asked to upload "instructions for reproduction'''', possibly with the source codes or stable URLs (from where the codes could be downloaded). (b) Papers with negative results. For such papers, the experimental setting and negative results must be presented in detail. Also, why the negative results are important for the research community must be explained clearly. The rationale behind this kind of paper is that this would help researchers choose the correct approaches to solve problems and avoid the (already worked out) failed approaches. (c) Detailed report, case study and literature review articles about innovative software / hardware, new technology, high impact computer applications and future development with sufficient background and subject coverage. (d) Special issue papers focussing on a particular theme with significant importance or papers selected from a relevant conference with sufficient improvement and new material to differentiate from the papers published in a conference proceedings.
期刊最新文献
Weight assignment in cloud service selection based on FAHP and rough sets The social force model: a behavioral modeling approach for information propagation during significant events A comprehensive study on social networks analysis and mining to detect opinion leaders A machine learning approach for skin lesion classification on iOS: implementing and optimizing a convolutional transfer learning model with Create ML Physical-layer security for primary users in 5G underlay cognitive radio system via artificial-noise-aided by secondary users
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1