{"title":"产生贝塞尔样光束与减少副瓣增强光片显微镜","authors":"Jerin George, Kishan Dholakia, Shanti Bhattacharya","doi":"10.1364/optcon.493003","DOIUrl":null,"url":null,"abstract":"Bessel beams have found important applications due to their propagation invariant nature. However, the presence of sidelobes has proven a hindrance in key imaging and biophotonics applications. We describe the design and generation of sidelobe-suppressed Bessel-like beams (SSBB) that provide enhanced contrast for light-sheet imaging. The sidelobe suppression is achieved by the interference of two Bessel beams with slightly different wavevectors. Axicon phase functions for each Bessel beam are combined into a single phase function using the random multiplexing technique. This phase function is realised using a spatial light modulator to generate a SSBB. The generated beam at 633 nm has a 1/ e 2 radius of 44 µm and a propagation invariant distance of 39 mm which is more than four times that of the Rayleigh range of a Gaussian beam with the same 1/ e 2 radius. Within this distance, the overall peak intensity of the sidelobes of the SSBB is less than 10% that of the main lobe peak intensity. In addition, through numerical simulation for the recovery of spatial frequencies, we show that the SSBB improves image contrast compared to a Bessel beam for light-sheet imaging. We also show that the designed phase function can be realised using a meta-optical element.","PeriodicalId":74366,"journal":{"name":"Optics continuum","volume":"65 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generation of Bessel-like beams with reduced sidelobes for enhanced light-sheet microscopy\",\"authors\":\"Jerin George, Kishan Dholakia, Shanti Bhattacharya\",\"doi\":\"10.1364/optcon.493003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bessel beams have found important applications due to their propagation invariant nature. However, the presence of sidelobes has proven a hindrance in key imaging and biophotonics applications. We describe the design and generation of sidelobe-suppressed Bessel-like beams (SSBB) that provide enhanced contrast for light-sheet imaging. The sidelobe suppression is achieved by the interference of two Bessel beams with slightly different wavevectors. Axicon phase functions for each Bessel beam are combined into a single phase function using the random multiplexing technique. This phase function is realised using a spatial light modulator to generate a SSBB. The generated beam at 633 nm has a 1/ e 2 radius of 44 µm and a propagation invariant distance of 39 mm which is more than four times that of the Rayleigh range of a Gaussian beam with the same 1/ e 2 radius. Within this distance, the overall peak intensity of the sidelobes of the SSBB is less than 10% that of the main lobe peak intensity. In addition, through numerical simulation for the recovery of spatial frequencies, we show that the SSBB improves image contrast compared to a Bessel beam for light-sheet imaging. We also show that the designed phase function can be realised using a meta-optical element.\",\"PeriodicalId\":74366,\"journal\":{\"name\":\"Optics continuum\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics continuum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/optcon.493003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics continuum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/optcon.493003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Generation of Bessel-like beams with reduced sidelobes for enhanced light-sheet microscopy
Bessel beams have found important applications due to their propagation invariant nature. However, the presence of sidelobes has proven a hindrance in key imaging and biophotonics applications. We describe the design and generation of sidelobe-suppressed Bessel-like beams (SSBB) that provide enhanced contrast for light-sheet imaging. The sidelobe suppression is achieved by the interference of two Bessel beams with slightly different wavevectors. Axicon phase functions for each Bessel beam are combined into a single phase function using the random multiplexing technique. This phase function is realised using a spatial light modulator to generate a SSBB. The generated beam at 633 nm has a 1/ e 2 radius of 44 µm and a propagation invariant distance of 39 mm which is more than four times that of the Rayleigh range of a Gaussian beam with the same 1/ e 2 radius. Within this distance, the overall peak intensity of the sidelobes of the SSBB is less than 10% that of the main lobe peak intensity. In addition, through numerical simulation for the recovery of spatial frequencies, we show that the SSBB improves image contrast compared to a Bessel beam for light-sheet imaging. We also show that the designed phase function can be realised using a meta-optical element.