{"title":"电信钢管劣化机理及抗震性能的探讨","authors":"Masaru Okutsu, Akira Ito, Gaku Shoji, Takanobu Suzuki","doi":"10.1061/(asce)ps.1949-1204.0000697","DOIUrl":null,"url":null,"abstract":"This study evaluates the seismic response of conduits considering the aging deterioration of steel-pipe threaded joints for communication. To model the displacement-load characteristics of the aged steel-pipe threaded joint, fracture experiments were conducted using specimens with a burial period of 30 to 50 years. The obtained results showed that the maximum tensile load tended to decrease as the burial period became longer and as the internal corrosion became severe. The deterioration of steel pipe threaded joints was represented by a model in which the yield load and maximum load decrease as the pipe thickness decreases in proportion to the 0.5th power of the burial period t due to corrosion. The seismic response of the system is investigated by modeling the pipe with beam elements and the deteriorated joints as well as the pipe-soil interaction with spring elements. It is shown that joints with a burial period of more than 20 years are plasticized with a ground strain of 0.3%, and joints with a burial period of 50 years are destroyed with a ground strain of 0.5%. As a result, the effect of joint deterioration on the seismic performance of the steel pipe conduits was quantitatively clarified.","PeriodicalId":16804,"journal":{"name":"Journal of Pipeline Systems Engineering and Practice","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Clarification of Deterioration Mechanism and Seismic Performance of Telecommunication Steel Conduit\",\"authors\":\"Masaru Okutsu, Akira Ito, Gaku Shoji, Takanobu Suzuki\",\"doi\":\"10.1061/(asce)ps.1949-1204.0000697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study evaluates the seismic response of conduits considering the aging deterioration of steel-pipe threaded joints for communication. To model the displacement-load characteristics of the aged steel-pipe threaded joint, fracture experiments were conducted using specimens with a burial period of 30 to 50 years. The obtained results showed that the maximum tensile load tended to decrease as the burial period became longer and as the internal corrosion became severe. The deterioration of steel pipe threaded joints was represented by a model in which the yield load and maximum load decrease as the pipe thickness decreases in proportion to the 0.5th power of the burial period t due to corrosion. The seismic response of the system is investigated by modeling the pipe with beam elements and the deteriorated joints as well as the pipe-soil interaction with spring elements. It is shown that joints with a burial period of more than 20 years are plasticized with a ground strain of 0.3%, and joints with a burial period of 50 years are destroyed with a ground strain of 0.5%. As a result, the effect of joint deterioration on the seismic performance of the steel pipe conduits was quantitatively clarified.\",\"PeriodicalId\":16804,\"journal\":{\"name\":\"Journal of Pipeline Systems Engineering and Practice\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pipeline Systems Engineering and Practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1061/(asce)ps.1949-1204.0000697\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pipeline Systems Engineering and Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1061/(asce)ps.1949-1204.0000697","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Clarification of Deterioration Mechanism and Seismic Performance of Telecommunication Steel Conduit
This study evaluates the seismic response of conduits considering the aging deterioration of steel-pipe threaded joints for communication. To model the displacement-load characteristics of the aged steel-pipe threaded joint, fracture experiments were conducted using specimens with a burial period of 30 to 50 years. The obtained results showed that the maximum tensile load tended to decrease as the burial period became longer and as the internal corrosion became severe. The deterioration of steel pipe threaded joints was represented by a model in which the yield load and maximum load decrease as the pipe thickness decreases in proportion to the 0.5th power of the burial period t due to corrosion. The seismic response of the system is investigated by modeling the pipe with beam elements and the deteriorated joints as well as the pipe-soil interaction with spring elements. It is shown that joints with a burial period of more than 20 years are plasticized with a ground strain of 0.3%, and joints with a burial period of 50 years are destroyed with a ground strain of 0.5%. As a result, the effect of joint deterioration on the seismic performance of the steel pipe conduits was quantitatively clarified.
期刊介绍:
The Journal of Pipeline Systems Engineering and Practice is a professional, authoritative technical resource that reports on a broad range of topics pertaining to the planning, engineering, design, construction, renewal, safety, operation and maintenance, asset management, environmental aspects, and sustainability of pipeline systems.
An important technical reference for researchers and practitioners from academia, industry, and government, it presents in-depth information on water distribution and transmission systems, wastewater collection systems (gravity and force mains), storm sewers and drainage structures/culverts, oil, gas, industrial, slurry, pneumatic and capsule pipelines, as well as conduit applications for power and communication cables.