Alexander Gießel, Nandor Ziebart, Felix Lenk, Thomas Walther
{"title":"可靠和廉价的溶解氧传感材料","authors":"Alexander Gießel, Nandor Ziebart, Felix Lenk, Thomas Walther","doi":"10.1007/s10800-023-02001-y","DOIUrl":null,"url":null,"abstract":"Abstract Bare, non-pretreated platinum wires and screen-printed platinum electrodes were used as both working and counter electrodes in the measurement of dissolved oxygen using a chronoamperometric method. The oxygen reduction current response in the diffusion state was used for a linear determination of air saturation. We evaluated the two different materials in general for their sensing performance such as conditioning time, accuracy, resolution and stability over 13 h of continuous mid-term measurement. A good performance was found for the wire electrodes in terms of accuracy with a current slope of 1.0–1.6 µA (% as)-1 and a resolution of 10–15 nA (Lowest Level of Detection = 0.1% as), but with an unstable current response result over the course of the measurement. The screen-printed electrodes have a resolution of 10–18 nA (Lowest Level of Detection = 0.6–0.8% as) and an accuracy of 620–660 nA (% as)-1 but they showed promising reproducibility and stability. Both materials require several hours of conditioning in the chronoamperometric method before a stable current response is achieved. For biotechnological applications, the platinum screen printed electrodes were evaluated in typical parameter settings (pH 4.0 and 7.4, salinity 0.1 to 10x phosphate buffered saline and temperature 12 to 42 °C) and showed correlations between the response time and stability and the temperature. No correlations were found between salinity, pH and the current response. In this paper, we present inexpensive electrode materials and a simple to implement chronoamperometric method for reliable direct measurement of dissolved oxygen in aqueous media. Graphical abstract","PeriodicalId":14887,"journal":{"name":"Journal of Applied Electrochemistry","volume":"54 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliable and inexpensive dissolved oxygen sensing materials\",\"authors\":\"Alexander Gießel, Nandor Ziebart, Felix Lenk, Thomas Walther\",\"doi\":\"10.1007/s10800-023-02001-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Bare, non-pretreated platinum wires and screen-printed platinum electrodes were used as both working and counter electrodes in the measurement of dissolved oxygen using a chronoamperometric method. The oxygen reduction current response in the diffusion state was used for a linear determination of air saturation. We evaluated the two different materials in general for their sensing performance such as conditioning time, accuracy, resolution and stability over 13 h of continuous mid-term measurement. A good performance was found for the wire electrodes in terms of accuracy with a current slope of 1.0–1.6 µA (% as)-1 and a resolution of 10–15 nA (Lowest Level of Detection = 0.1% as), but with an unstable current response result over the course of the measurement. The screen-printed electrodes have a resolution of 10–18 nA (Lowest Level of Detection = 0.6–0.8% as) and an accuracy of 620–660 nA (% as)-1 but they showed promising reproducibility and stability. Both materials require several hours of conditioning in the chronoamperometric method before a stable current response is achieved. For biotechnological applications, the platinum screen printed electrodes were evaluated in typical parameter settings (pH 4.0 and 7.4, salinity 0.1 to 10x phosphate buffered saline and temperature 12 to 42 °C) and showed correlations between the response time and stability and the temperature. No correlations were found between salinity, pH and the current response. In this paper, we present inexpensive electrode materials and a simple to implement chronoamperometric method for reliable direct measurement of dissolved oxygen in aqueous media. Graphical abstract\",\"PeriodicalId\":14887,\"journal\":{\"name\":\"Journal of Applied Electrochemistry\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Electrochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10800-023-02001-y\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10800-023-02001-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Reliable and inexpensive dissolved oxygen sensing materials
Abstract Bare, non-pretreated platinum wires and screen-printed platinum electrodes were used as both working and counter electrodes in the measurement of dissolved oxygen using a chronoamperometric method. The oxygen reduction current response in the diffusion state was used for a linear determination of air saturation. We evaluated the two different materials in general for their sensing performance such as conditioning time, accuracy, resolution and stability over 13 h of continuous mid-term measurement. A good performance was found for the wire electrodes in terms of accuracy with a current slope of 1.0–1.6 µA (% as)-1 and a resolution of 10–15 nA (Lowest Level of Detection = 0.1% as), but with an unstable current response result over the course of the measurement. The screen-printed electrodes have a resolution of 10–18 nA (Lowest Level of Detection = 0.6–0.8% as) and an accuracy of 620–660 nA (% as)-1 but they showed promising reproducibility and stability. Both materials require several hours of conditioning in the chronoamperometric method before a stable current response is achieved. For biotechnological applications, the platinum screen printed electrodes were evaluated in typical parameter settings (pH 4.0 and 7.4, salinity 0.1 to 10x phosphate buffered saline and temperature 12 to 42 °C) and showed correlations between the response time and stability and the temperature. No correlations were found between salinity, pH and the current response. In this paper, we present inexpensive electrode materials and a simple to implement chronoamperometric method for reliable direct measurement of dissolved oxygen in aqueous media. Graphical abstract
期刊介绍:
The Journal of Applied Electrochemistry is the leading journal on technologically orientated aspects of electrochemistry. The interface between electrochemical science and engineering is highlighted, emphasizing the application of electrochemistry to technological development and practice, and documenting properties and data of materials; design factors, design methodologies, scale-up, economics and testing of electrochemical devices and processes. The broad range of technologies includes energy conversion, conservation, and storage, new battery systems, fuel cells, super capacitors, solar cells, power delivery, industrial synthesis, environmental remediation, cell design, corrosion, electrochemical reaction engineering, medical applications of electrochemistry and bio-electrochemistry, the electrochemical treatment of effluents, hydrometallurgy, molten salt and solid state electrochemistry, surface finishing, electroplating, electrodeposition, sensors, and applications of molecular electrochemistry. It also publishes invited reviewed articles, book reviews and news items and a comprehensive electrochemical events calendar.