Francisco J. P. Rebelo, Joel R. M. Oliveira, Hugo M. R. D. Silva, Jorge Oliveira e Sá, Vânia Marecos, João Afonso
{"title":"基于光纤光栅光传感器的路面监测系统的安装与使用","authors":"Francisco J. P. Rebelo, Joel R. M. Oliveira, Hugo M. R. D. Silva, Jorge Oliveira e Sá, Vânia Marecos, João Afonso","doi":"10.3390/infrastructures8100149","DOIUrl":null,"url":null,"abstract":"The evolution of technological tools, namely affordable sensors for data collection, and the growing concerns about maintaining roads in adequate conditions have promoted the development of continuous pavement monitoring systems. This paper presents the installation and use of an innovative pavement monitoring system, which was developed to measure the effects of vehicle loads and temperature on the performance of a pavement structure. The sensors used are based on fibre Bragg grating optical technology, collecting data about the strains imposed in the pavement and the temperature at which those measurements are made. The site selection for the system’s installation and the essential installation details to ensure successful data collection are addressed. A calibration procedure was implemented by performing falling weight deflectometer tests and passing preweighed heavy vehicles over the sensors. In addition to validating the system installation, the results obtained in the calibration confirmed the importance of adequately choosing the distance between sensors. Differences of 50 mm in the position of the load may cause differences of about 20% to 25% in the resulting strains. These results confirmed the importance of increasing the sensor concentration in wheel paths. Furthermore, for loads between 25 kN and 65 kN, raising the temperature by 8 °C caused an increase of about 20% in the horizontal tensile strains measured in the pavement. In summary, it was possible to conclude that this innovative system is capable of capturing the effects of temperature and vehicle speed on the response of the pavement, which may be considered an advantage of this type of monitoring system when compared to those that are only used to determine the loads applied to the pavement or to characterise the type of vehicle.","PeriodicalId":13601,"journal":{"name":"Infrastructures","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Installation and Use of a Pavement Monitoring System Based on Fibre Bragg Grating Optical Sensors\",\"authors\":\"Francisco J. P. Rebelo, Joel R. M. Oliveira, Hugo M. R. D. Silva, Jorge Oliveira e Sá, Vânia Marecos, João Afonso\",\"doi\":\"10.3390/infrastructures8100149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The evolution of technological tools, namely affordable sensors for data collection, and the growing concerns about maintaining roads in adequate conditions have promoted the development of continuous pavement monitoring systems. This paper presents the installation and use of an innovative pavement monitoring system, which was developed to measure the effects of vehicle loads and temperature on the performance of a pavement structure. The sensors used are based on fibre Bragg grating optical technology, collecting data about the strains imposed in the pavement and the temperature at which those measurements are made. The site selection for the system’s installation and the essential installation details to ensure successful data collection are addressed. A calibration procedure was implemented by performing falling weight deflectometer tests and passing preweighed heavy vehicles over the sensors. In addition to validating the system installation, the results obtained in the calibration confirmed the importance of adequately choosing the distance between sensors. Differences of 50 mm in the position of the load may cause differences of about 20% to 25% in the resulting strains. These results confirmed the importance of increasing the sensor concentration in wheel paths. Furthermore, for loads between 25 kN and 65 kN, raising the temperature by 8 °C caused an increase of about 20% in the horizontal tensile strains measured in the pavement. In summary, it was possible to conclude that this innovative system is capable of capturing the effects of temperature and vehicle speed on the response of the pavement, which may be considered an advantage of this type of monitoring system when compared to those that are only used to determine the loads applied to the pavement or to characterise the type of vehicle.\",\"PeriodicalId\":13601,\"journal\":{\"name\":\"Infrastructures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infrastructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/infrastructures8100149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infrastructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/infrastructures8100149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Installation and Use of a Pavement Monitoring System Based on Fibre Bragg Grating Optical Sensors
The evolution of technological tools, namely affordable sensors for data collection, and the growing concerns about maintaining roads in adequate conditions have promoted the development of continuous pavement monitoring systems. This paper presents the installation and use of an innovative pavement monitoring system, which was developed to measure the effects of vehicle loads and temperature on the performance of a pavement structure. The sensors used are based on fibre Bragg grating optical technology, collecting data about the strains imposed in the pavement and the temperature at which those measurements are made. The site selection for the system’s installation and the essential installation details to ensure successful data collection are addressed. A calibration procedure was implemented by performing falling weight deflectometer tests and passing preweighed heavy vehicles over the sensors. In addition to validating the system installation, the results obtained in the calibration confirmed the importance of adequately choosing the distance between sensors. Differences of 50 mm in the position of the load may cause differences of about 20% to 25% in the resulting strains. These results confirmed the importance of increasing the sensor concentration in wheel paths. Furthermore, for loads between 25 kN and 65 kN, raising the temperature by 8 °C caused an increase of about 20% in the horizontal tensile strains measured in the pavement. In summary, it was possible to conclude that this innovative system is capable of capturing the effects of temperature and vehicle speed on the response of the pavement, which may be considered an advantage of this type of monitoring system when compared to those that are only used to determine the loads applied to the pavement or to characterise the type of vehicle.