{"title":"基于非对称二元多项式的可验证(t,n)阈值量子秘密共享方案","authors":"Feiting Guan, Jiansheng Guo, Lele Li","doi":"10.1088/1555-6611/ad04c2","DOIUrl":null,"url":null,"abstract":"Abstract Threshold quantum secret sharing is a typical method for quantum secret sharing (QSS) schemes. In this paper, we propose a verifiable <?CDATA $\\left( {t,n} \\right)$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mfenced close=\")\" open=\"(\"> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> </mml:mrow> </mml:mfenced> </mml:math> threshold QSS scheme based on the <?CDATA $d$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>d</mml:mi> </mml:math> -dimensional Bell state and asymmetric binary polynomial. In this scheme, the dealer encodes the secret using the asymmetric binary polynomial and generates the corresponding secret share for each participant. Then, the dealer prepares the <?CDATA $d$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>d</mml:mi> </mml:math> -dimensional Bell state, and the participants perform corresponding unitary operations on the particles in transmission to recover the secret. With the hash function and the session key pairs, not only the cheating behavior of the dishonest participants can be detected, but also the specific cheaters can be identified. Furthermore, we consider the case when no less than <?CDATA $t$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>t</mml:mi> </mml:math> participants cooperate to recover the secret, which makes the proposed scheme more practical. Analyses show that the scheme can resist forgery attack, collusion attack and other common attacks.","PeriodicalId":17976,"journal":{"name":"Laser Physics","volume":"97 12","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A verifiable (t,n) threshold quantum secret sharing scheme based on asymmetric binary polynomial\",\"authors\":\"Feiting Guan, Jiansheng Guo, Lele Li\",\"doi\":\"10.1088/1555-6611/ad04c2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Threshold quantum secret sharing is a typical method for quantum secret sharing (QSS) schemes. In this paper, we propose a verifiable <?CDATA $\\\\left( {t,n} \\\\right)$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mfenced close=\\\")\\\" open=\\\"(\\\"> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> </mml:mrow> </mml:mfenced> </mml:math> threshold QSS scheme based on the <?CDATA $d$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>d</mml:mi> </mml:math> -dimensional Bell state and asymmetric binary polynomial. In this scheme, the dealer encodes the secret using the asymmetric binary polynomial and generates the corresponding secret share for each participant. Then, the dealer prepares the <?CDATA $d$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>d</mml:mi> </mml:math> -dimensional Bell state, and the participants perform corresponding unitary operations on the particles in transmission to recover the secret. With the hash function and the session key pairs, not only the cheating behavior of the dishonest participants can be detected, but also the specific cheaters can be identified. Furthermore, we consider the case when no less than <?CDATA $t$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>t</mml:mi> </mml:math> participants cooperate to recover the secret, which makes the proposed scheme more practical. Analyses show that the scheme can resist forgery attack, collusion attack and other common attacks.\",\"PeriodicalId\":17976,\"journal\":{\"name\":\"Laser Physics\",\"volume\":\"97 12\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1555-6611/ad04c2\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1555-6611/ad04c2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
A verifiable (t,n) threshold quantum secret sharing scheme based on asymmetric binary polynomial
Abstract Threshold quantum secret sharing is a typical method for quantum secret sharing (QSS) schemes. In this paper, we propose a verifiable t,n threshold QSS scheme based on the d -dimensional Bell state and asymmetric binary polynomial. In this scheme, the dealer encodes the secret using the asymmetric binary polynomial and generates the corresponding secret share for each participant. Then, the dealer prepares the d -dimensional Bell state, and the participants perform corresponding unitary operations on the particles in transmission to recover the secret. With the hash function and the session key pairs, not only the cheating behavior of the dishonest participants can be detected, but also the specific cheaters can be identified. Furthermore, we consider the case when no less than t participants cooperate to recover the secret, which makes the proposed scheme more practical. Analyses show that the scheme can resist forgery attack, collusion attack and other common attacks.
期刊介绍:
Laser Physics offers a comprehensive view of theoretical and experimental laser research and applications. Articles cover every aspect of modern laser physics and quantum electronics, emphasizing physical effects in various media (solid, gaseous, liquid) leading to the generation of laser radiation; peculiarities of propagation of laser radiation; problems involving impact of laser radiation on various substances and the emerging physical effects, including coherent ones; the applied use of lasers and laser spectroscopy; the processing and storage of information; and more.
The full list of subject areas covered is as follows:
-physics of lasers-
fibre optics and fibre lasers-
quantum optics and quantum information science-
ultrafast optics and strong-field physics-
nonlinear optics-
physics of cold trapped atoms-
laser methods in chemistry, biology, medicine and ecology-
laser spectroscopy-
novel laser materials and lasers-
optics of nanomaterials-
interaction of laser radiation with matter-
laser interaction with solids-
photonics