基于多项式核支持向量机(SVM)的在线学生活动成绩分类

Muhammad Hareez Mohd Zaki, Mohd Azri Mohd Aziz, Suhana Sulaiman, Najidah Hambali
{"title":"基于多项式核支持向量机(SVM)的在线学生活动成绩分类","authors":"Muhammad Hareez Mohd Zaki, Mohd Azri Mohd Aziz, Suhana Sulaiman, Najidah Hambali","doi":"10.24191/jeesr.v23i1.009","DOIUrl":null,"url":null,"abstract":"—The increasing usage of classification algorithms has encouraged researchers to explore many topics, including academic-related topics. In addition, the availability of data from various academic information management systems in recent years has been increasing, causing classification to become a technique that is in demand by educational institutes. Thereby, having a classification technique is important in researching the data on students’ performance. The purpose of this study is to classify students’ performance by using a polynomial kernel of Support Vector Machine (SVM) on online students’ activities. A new dataset is proposed in this study, which consists of academic and student online behaviours that influence the students’ performance. The proposed dataset also undergoes pre-processing stage to improve the accuracy and identify the significance of the proposed features. The experiment for SVM-POLY classification performance was set with a range of values on the parameters to be optimised by an optimisation algorithm, Grid Search. Classification accuracy, Precision, Recall and f1-score were applied to observe the result and determine the best classifier performance. The experimental results show that SVM – POLY, with a gamma value of 0.005, regularisation value of 0.1 and degree value of 1, come out with the best performance compared to a default value of SVM – POLY. The study is significant towards educational data mining in analysing the students’ performance during online students’ activities.","PeriodicalId":470905,"journal":{"name":"Journal of electrical and electronic systems research","volume":"58 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Student Performance Classification using Support Vector Machine (SVM) with Polynomical Kernel on Online Student Activities\",\"authors\":\"Muhammad Hareez Mohd Zaki, Mohd Azri Mohd Aziz, Suhana Sulaiman, Najidah Hambali\",\"doi\":\"10.24191/jeesr.v23i1.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"—The increasing usage of classification algorithms has encouraged researchers to explore many topics, including academic-related topics. In addition, the availability of data from various academic information management systems in recent years has been increasing, causing classification to become a technique that is in demand by educational institutes. Thereby, having a classification technique is important in researching the data on students’ performance. The purpose of this study is to classify students’ performance by using a polynomial kernel of Support Vector Machine (SVM) on online students’ activities. A new dataset is proposed in this study, which consists of academic and student online behaviours that influence the students’ performance. The proposed dataset also undergoes pre-processing stage to improve the accuracy and identify the significance of the proposed features. The experiment for SVM-POLY classification performance was set with a range of values on the parameters to be optimised by an optimisation algorithm, Grid Search. Classification accuracy, Precision, Recall and f1-score were applied to observe the result and determine the best classifier performance. The experimental results show that SVM – POLY, with a gamma value of 0.005, regularisation value of 0.1 and degree value of 1, come out with the best performance compared to a default value of SVM – POLY. The study is significant towards educational data mining in analysing the students’ performance during online students’ activities.\",\"PeriodicalId\":470905,\"journal\":{\"name\":\"Journal of electrical and electronic systems research\",\"volume\":\"58 10\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of electrical and electronic systems research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24191/jeesr.v23i1.009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of electrical and electronic systems research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24191/jeesr.v23i1.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Student Performance Classification using Support Vector Machine (SVM) with Polynomical Kernel on Online Student Activities
—The increasing usage of classification algorithms has encouraged researchers to explore many topics, including academic-related topics. In addition, the availability of data from various academic information management systems in recent years has been increasing, causing classification to become a technique that is in demand by educational institutes. Thereby, having a classification technique is important in researching the data on students’ performance. The purpose of this study is to classify students’ performance by using a polynomial kernel of Support Vector Machine (SVM) on online students’ activities. A new dataset is proposed in this study, which consists of academic and student online behaviours that influence the students’ performance. The proposed dataset also undergoes pre-processing stage to improve the accuracy and identify the significance of the proposed features. The experiment for SVM-POLY classification performance was set with a range of values on the parameters to be optimised by an optimisation algorithm, Grid Search. Classification accuracy, Precision, Recall and f1-score were applied to observe the result and determine the best classifier performance. The experimental results show that SVM – POLY, with a gamma value of 0.005, regularisation value of 0.1 and degree value of 1, come out with the best performance compared to a default value of SVM – POLY. The study is significant towards educational data mining in analysing the students’ performance during online students’ activities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Systematic Literature Review of Machine Learning Methods in Insulin Secretion Model Analysis Level Shifter Signal Conditioning Circuit Design for 3-electrode Cell Portable Redox Sensor Feature Selection Methods Application Towards a New Dataset based on Online Student Activities Integration of Stability Model of PV System by Using WEEC Model and Generic Type 4 PV Model in PSSE Software Student Performance Classification: Data, Features and Classifiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1