Ahmad Hafiz Mohd Hashim, Norhafiz Azis, Jasronita Jasni, Mohd Amran Mohd Radzi, Masahiro Kozako, Mohamad Kamarol Mohd Jamil, Zaini Yaakub
{"title":"石油中电声发射局部放电信号去噪方法的研究","authors":"Ahmad Hafiz Mohd Hashim, Norhafiz Azis, Jasronita Jasni, Mohd Amran Mohd Radzi, Masahiro Kozako, Mohamad Kamarol Mohd Jamil, Zaini Yaakub","doi":"10.52549/ijeei.v11i3.4463","DOIUrl":null,"url":null,"abstract":"Partial discharge (PD) measurements either through electrical or acoustic emission approaches can be subjected to noises that arise from different sources. In this study, the examination on the denoising methods for electrical and acoustic emission PD signal is carried out. The PD was produced through needle-plane electrodes configuration. Once the voltage reached to 30 kV, the electrical and acoustic emission PD signals were recorded and additive white Gaussian noise (AWGN) was introduced. These signals were then denoised using moving average (MA), finite impulse response (FIR) low/high-pass filters, and discrete wavelet transform (DWT) methods. The denoising methods were evaluated through ratio to noise level (RNL), normalized root mean square error (NRMSE) and normalized correlation coefficient (NCC). In addition, the computation times for all denoising methods were also recorded. Based on RNL, NRMSE and NCC indexes, the performances of the denoising methods were analyzed through normalization based on the coefficient of variation (𝐶𝑣). Based on the current study, it is found that DWT performs well to denoise the electrical PD signal based on the RNL and NRMSE 𝐶𝑣 index while MA has a good denoising NCC and computation time 𝐶𝑣 index for acoustic emission PD signal.","PeriodicalId":37618,"journal":{"name":"Indonesian Journal of Electrical Engineering and Informatics","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Examination on the Denoising Methods for Electrical and Acoustic Emission Partial Discharge Signals in Oil\",\"authors\":\"Ahmad Hafiz Mohd Hashim, Norhafiz Azis, Jasronita Jasni, Mohd Amran Mohd Radzi, Masahiro Kozako, Mohamad Kamarol Mohd Jamil, Zaini Yaakub\",\"doi\":\"10.52549/ijeei.v11i3.4463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Partial discharge (PD) measurements either through electrical or acoustic emission approaches can be subjected to noises that arise from different sources. In this study, the examination on the denoising methods for electrical and acoustic emission PD signal is carried out. The PD was produced through needle-plane electrodes configuration. Once the voltage reached to 30 kV, the electrical and acoustic emission PD signals were recorded and additive white Gaussian noise (AWGN) was introduced. These signals were then denoised using moving average (MA), finite impulse response (FIR) low/high-pass filters, and discrete wavelet transform (DWT) methods. The denoising methods were evaluated through ratio to noise level (RNL), normalized root mean square error (NRMSE) and normalized correlation coefficient (NCC). In addition, the computation times for all denoising methods were also recorded. Based on RNL, NRMSE and NCC indexes, the performances of the denoising methods were analyzed through normalization based on the coefficient of variation (𝐶𝑣). Based on the current study, it is found that DWT performs well to denoise the electrical PD signal based on the RNL and NRMSE 𝐶𝑣 index while MA has a good denoising NCC and computation time 𝐶𝑣 index for acoustic emission PD signal.\",\"PeriodicalId\":37618,\"journal\":{\"name\":\"Indonesian Journal of Electrical Engineering and Informatics\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Electrical Engineering and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52549/ijeei.v11i3.4463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Electrical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52549/ijeei.v11i3.4463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Examination on the Denoising Methods for Electrical and Acoustic Emission Partial Discharge Signals in Oil
Partial discharge (PD) measurements either through electrical or acoustic emission approaches can be subjected to noises that arise from different sources. In this study, the examination on the denoising methods for electrical and acoustic emission PD signal is carried out. The PD was produced through needle-plane electrodes configuration. Once the voltage reached to 30 kV, the electrical and acoustic emission PD signals were recorded and additive white Gaussian noise (AWGN) was introduced. These signals were then denoised using moving average (MA), finite impulse response (FIR) low/high-pass filters, and discrete wavelet transform (DWT) methods. The denoising methods were evaluated through ratio to noise level (RNL), normalized root mean square error (NRMSE) and normalized correlation coefficient (NCC). In addition, the computation times for all denoising methods were also recorded. Based on RNL, NRMSE and NCC indexes, the performances of the denoising methods were analyzed through normalization based on the coefficient of variation (𝐶𝑣). Based on the current study, it is found that DWT performs well to denoise the electrical PD signal based on the RNL and NRMSE 𝐶𝑣 index while MA has a good denoising NCC and computation time 𝐶𝑣 index for acoustic emission PD signal.
期刊介绍:
The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation. Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction. Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging. Control: Optimal, Robust and Adaptive Controls, Non Linear and Stochastic Controls, Modeling and Identification, Robotics, Image Based Control, Hybrid and Switching Control, Process Optimization and Scheduling, Control and Intelligent Systems. Computer and Informatics: Computer Architecture, Parallel and Distributed Computer, Pervasive Computing, Computer Network, Embedded System, Human—Computer Interaction, Virtual/Augmented Reality, Computer Security, Software Engineering (Software: Lifecycle, Management, Engineering Process, Engineering Tools and Methods), Programming (Programming Methodology and Paradigm), Data Engineering (Data and Knowledge level Modeling, Information Management (DB) practices, Knowledge Based Management System, Knowledge Discovery in Data).