{"title":"在游戏化机器人演习中使用热成像和光学成像的多模态影响检测","authors":"Youssef Mohamed, Arzu Güneysu, Séverin Lemaignan, Iolanda Leite","doi":"10.1007/s12369-023-01066-1","DOIUrl":null,"url":null,"abstract":"Abstract Affect recognition, or the ability to detect and interpret emotional states, has the potential to be a valuable tool in the field of healthcare. In particular, it can be useful in gamified therapy, which involves using gaming techniques to motivate and keep the engagement of patients in therapeutic activities. This study aims to examine the accuracy of machine learning models using thermal imaging and action unit data for affect classification in a gamified robot therapy scenario. A self-report survey and three machine learning models were used to assess emotions including frustration, boredom, and enjoyment in participants during different phases of the game. The results showed that the multimodal approach with the combination of thermal imaging and action units with LSTM model had the highest accuracy of 77% for emotion classification over a 7-s sliding window, while thermal imaging had the lowest standard deviation among participants. The results suggest that thermal imaging and action units can be effective in detecting affective states and might have the potential to be used in healthcare applications, such as gamified therapy, as a promising non-intrusive method for recognizing internal states.","PeriodicalId":14361,"journal":{"name":"International Journal of Social Robotics","volume":"204 ","pages":"0"},"PeriodicalIF":3.8000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-modal Affect Detection Using Thermal and Optical Imaging in a Gamified Robotic Exercise\",\"authors\":\"Youssef Mohamed, Arzu Güneysu, Séverin Lemaignan, Iolanda Leite\",\"doi\":\"10.1007/s12369-023-01066-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Affect recognition, or the ability to detect and interpret emotional states, has the potential to be a valuable tool in the field of healthcare. In particular, it can be useful in gamified therapy, which involves using gaming techniques to motivate and keep the engagement of patients in therapeutic activities. This study aims to examine the accuracy of machine learning models using thermal imaging and action unit data for affect classification in a gamified robot therapy scenario. A self-report survey and three machine learning models were used to assess emotions including frustration, boredom, and enjoyment in participants during different phases of the game. The results showed that the multimodal approach with the combination of thermal imaging and action units with LSTM model had the highest accuracy of 77% for emotion classification over a 7-s sliding window, while thermal imaging had the lowest standard deviation among participants. The results suggest that thermal imaging and action units can be effective in detecting affective states and might have the potential to be used in healthcare applications, such as gamified therapy, as a promising non-intrusive method for recognizing internal states.\",\"PeriodicalId\":14361,\"journal\":{\"name\":\"International Journal of Social Robotics\",\"volume\":\"204 \",\"pages\":\"0\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Social Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12369-023-01066-1\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Social Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12369-023-01066-1","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
Multi-modal Affect Detection Using Thermal and Optical Imaging in a Gamified Robotic Exercise
Abstract Affect recognition, or the ability to detect and interpret emotional states, has the potential to be a valuable tool in the field of healthcare. In particular, it can be useful in gamified therapy, which involves using gaming techniques to motivate and keep the engagement of patients in therapeutic activities. This study aims to examine the accuracy of machine learning models using thermal imaging and action unit data for affect classification in a gamified robot therapy scenario. A self-report survey and three machine learning models were used to assess emotions including frustration, boredom, and enjoyment in participants during different phases of the game. The results showed that the multimodal approach with the combination of thermal imaging and action units with LSTM model had the highest accuracy of 77% for emotion classification over a 7-s sliding window, while thermal imaging had the lowest standard deviation among participants. The results suggest that thermal imaging and action units can be effective in detecting affective states and might have the potential to be used in healthcare applications, such as gamified therapy, as a promising non-intrusive method for recognizing internal states.
期刊介绍:
Social Robotics is the study of robots that are able to interact and communicate among themselves, with humans, and with the environment, within the social and cultural structure attached to its role. The journal covers a broad spectrum of topics related to the latest technologies, new research results and developments in the area of social robotics on all levels, from developments in core enabling technologies to system integration, aesthetic design, applications and social implications. It provides a platform for like-minded researchers to present their findings and latest developments in social robotics, covering relevant advances in engineering, computing, arts and social sciences.
The journal publishes original, peer reviewed articles and contributions on innovative ideas and concepts, new discoveries and improvements, as well as novel applications, by leading researchers and developers regarding the latest fundamental advances in the core technologies that form the backbone of social robotics, distinguished developmental projects in the area, as well as seminal works in aesthetic design, ethics and philosophy, studies on social impact and influence, pertaining to social robotics.