Zhaoqing Wang, Xinle Gong, Xueyun Li, Xingyu Li, Jin Huang
{"title":"高速紧急避障情况下的人机共享转向控制","authors":"Zhaoqing Wang, Xinle Gong, Xueyun Li, Xingyu Li, Jin Huang","doi":"10.1177/03611981231203221","DOIUrl":null,"url":null,"abstract":"The allocation of controlling and driving authority is an important and difficult aspect of human–machine shared steering control (SSC). This paper addresses the SSC problem in high-speed emergency obstacle avoidance scenarios. A parallel SSC framework containing a dynamic driving authority allocation model and a path tracking controller is developed, where the human driver and controller can control the vehicle simultaneously. First, fuzzy logic is adopted in the SSC framework to actively adjust the driving authority between the human driver and the controller. The driver steering state and path tracking error are considered to reduce the negative impact of a driver’s mis-operation and weaken any human–machine conflict. Subsequently, the path tracking controller in the proposed SSC system is designed based on a nonlinear vehicle lateral model to improve the accuracy of the controller, particularly when the vehicle is facing large lateral acceleration. To address the nonlinear control problem, the Udwadia–Kalaba approach is employed and the Lyapunov stability of the controller is proved. Finally, the effectiveness of the proposed SSC system is proved through simulation results, which show that the vehicle has excellent path tracking performance in high-speed obstacle avoidance scenarios. In addition, the system can resolve the human–machine conflict problem.","PeriodicalId":23279,"journal":{"name":"Transportation Research Record","volume":"10 ","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human–Machine Shared Steering Control Under High-Speed Emergency Obstacle Avoidance Scenarios\",\"authors\":\"Zhaoqing Wang, Xinle Gong, Xueyun Li, Xingyu Li, Jin Huang\",\"doi\":\"10.1177/03611981231203221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The allocation of controlling and driving authority is an important and difficult aspect of human–machine shared steering control (SSC). This paper addresses the SSC problem in high-speed emergency obstacle avoidance scenarios. A parallel SSC framework containing a dynamic driving authority allocation model and a path tracking controller is developed, where the human driver and controller can control the vehicle simultaneously. First, fuzzy logic is adopted in the SSC framework to actively adjust the driving authority between the human driver and the controller. The driver steering state and path tracking error are considered to reduce the negative impact of a driver’s mis-operation and weaken any human–machine conflict. Subsequently, the path tracking controller in the proposed SSC system is designed based on a nonlinear vehicle lateral model to improve the accuracy of the controller, particularly when the vehicle is facing large lateral acceleration. To address the nonlinear control problem, the Udwadia–Kalaba approach is employed and the Lyapunov stability of the controller is proved. Finally, the effectiveness of the proposed SSC system is proved through simulation results, which show that the vehicle has excellent path tracking performance in high-speed obstacle avoidance scenarios. In addition, the system can resolve the human–machine conflict problem.\",\"PeriodicalId\":23279,\"journal\":{\"name\":\"Transportation Research Record\",\"volume\":\"10 \",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Record\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/03611981231203221\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/03611981231203221","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Human–Machine Shared Steering Control Under High-Speed Emergency Obstacle Avoidance Scenarios
The allocation of controlling and driving authority is an important and difficult aspect of human–machine shared steering control (SSC). This paper addresses the SSC problem in high-speed emergency obstacle avoidance scenarios. A parallel SSC framework containing a dynamic driving authority allocation model and a path tracking controller is developed, where the human driver and controller can control the vehicle simultaneously. First, fuzzy logic is adopted in the SSC framework to actively adjust the driving authority between the human driver and the controller. The driver steering state and path tracking error are considered to reduce the negative impact of a driver’s mis-operation and weaken any human–machine conflict. Subsequently, the path tracking controller in the proposed SSC system is designed based on a nonlinear vehicle lateral model to improve the accuracy of the controller, particularly when the vehicle is facing large lateral acceleration. To address the nonlinear control problem, the Udwadia–Kalaba approach is employed and the Lyapunov stability of the controller is proved. Finally, the effectiveness of the proposed SSC system is proved through simulation results, which show that the vehicle has excellent path tracking performance in high-speed obstacle avoidance scenarios. In addition, the system can resolve the human–machine conflict problem.
期刊介绍:
Transportation Research Record: Journal of the Transportation Research Board is one of the most cited and prolific transportation journals in the world, offering unparalleled depth and breadth in the coverage of transportation-related topics. The TRR publishes approximately 70 issues annually of outstanding, peer-reviewed papers presenting research findings in policy, planning, administration, economics and financing, operations, construction, design, maintenance, safety, and more, for all modes of transportation. This site provides electronic access to a full compilation of papers since the 1996 series.