{"title":"用变分迭代法研究静电mems谐振器的分形拉入运动","authors":"GUANG-QING FENG, LI ZHANG, WEI TANG","doi":"10.1142/s0218348x23501220","DOIUrl":null,"url":null,"abstract":"The dynamic pull-in instability of a microstructure is a vast research field and its analysis is of great significance for ensuring the effective operation and reliability of micro-electromechanical systems (MEMS). A fractal modification for the traditional MEMS system is suggested to be closer to the real state as a practical application in the air with impurities or humidity. In this paper, we establish a fractal model for a class of electrostatically driven microstructure resonant sensors and find the phenomenon of pull-in instability caused by DC bias voltage and AC excitation voltage. The variational iteration method has been extended to obtain approximate analytical solutions and the pull-in threshold value for the fractal MEMS system. The result obtained from this method shows good agreement with the numerical solution. The simple and efficient operability is demonstrated through theoretical analysis and results comparisons.","PeriodicalId":55144,"journal":{"name":"Fractals-Complex Geometry Patterns and Scaling in Nature and Society","volume":"204 ","pages":"0"},"PeriodicalIF":3.3000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FRACTAL PULL-IN MOTION OF ELECTROSTATIC MEMS RESONATORS BY THE VARIATIONAL ITERATION METHOD\",\"authors\":\"GUANG-QING FENG, LI ZHANG, WEI TANG\",\"doi\":\"10.1142/s0218348x23501220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamic pull-in instability of a microstructure is a vast research field and its analysis is of great significance for ensuring the effective operation and reliability of micro-electromechanical systems (MEMS). A fractal modification for the traditional MEMS system is suggested to be closer to the real state as a practical application in the air with impurities or humidity. In this paper, we establish a fractal model for a class of electrostatically driven microstructure resonant sensors and find the phenomenon of pull-in instability caused by DC bias voltage and AC excitation voltage. The variational iteration method has been extended to obtain approximate analytical solutions and the pull-in threshold value for the fractal MEMS system. The result obtained from this method shows good agreement with the numerical solution. The simple and efficient operability is demonstrated through theoretical analysis and results comparisons.\",\"PeriodicalId\":55144,\"journal\":{\"name\":\"Fractals-Complex Geometry Patterns and Scaling in Nature and Society\",\"volume\":\"204 \",\"pages\":\"0\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractals-Complex Geometry Patterns and Scaling in Nature and Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218348x23501220\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals-Complex Geometry Patterns and Scaling in Nature and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x23501220","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
FRACTAL PULL-IN MOTION OF ELECTROSTATIC MEMS RESONATORS BY THE VARIATIONAL ITERATION METHOD
The dynamic pull-in instability of a microstructure is a vast research field and its analysis is of great significance for ensuring the effective operation and reliability of micro-electromechanical systems (MEMS). A fractal modification for the traditional MEMS system is suggested to be closer to the real state as a practical application in the air with impurities or humidity. In this paper, we establish a fractal model for a class of electrostatically driven microstructure resonant sensors and find the phenomenon of pull-in instability caused by DC bias voltage and AC excitation voltage. The variational iteration method has been extended to obtain approximate analytical solutions and the pull-in threshold value for the fractal MEMS system. The result obtained from this method shows good agreement with the numerical solution. The simple and efficient operability is demonstrated through theoretical analysis and results comparisons.
期刊介绍:
The investigation of phenomena involving complex geometry, patterns and scaling has gone through a spectacular development and applications in the past decades. For this relatively short time, geometrical and/or temporal scaling have been shown to represent the common aspects of many processes occurring in an unusually diverse range of fields including physics, mathematics, biology, chemistry, economics, engineering and technology, and human behavior. As a rule, the complex nature of a phenomenon is manifested in the underlying intricate geometry which in most of the cases can be described in terms of objects with non-integer (fractal) dimension. In other cases, the distribution of events in time or various other quantities show specific scaling behavior, thus providing a better understanding of the relevant factors determining the given processes.
Using fractal geometry and scaling as a language in the related theoretical, numerical and experimental investigations, it has been possible to get a deeper insight into previously intractable problems. Among many others, a better understanding of growth phenomena, turbulence, iterative functions, colloidal aggregation, biological pattern formation, stock markets and inhomogeneous materials has emerged through the application of such concepts as scale invariance, self-affinity and multifractality.
The main challenge of the journal devoted exclusively to the above kinds of phenomena lies in its interdisciplinary nature; it is our commitment to bring together the most recent developments in these fields so that a fruitful interaction of various approaches and scientific views on complex spatial and temporal behaviors in both nature and society could take place.