{"title":"基于端到端学习的社交机器人非语言社交行为生成","authors":"Woo-Ri Ko, Minsu Jang, Jaeyeon Lee, Jaehong Kim","doi":"10.1177/02783649231207974","DOIUrl":null,"url":null,"abstract":"Social robots facilitate improved human–robot interactions through nonverbal behaviors such as handshakes or hugs. However, the traditional methods, which rely on precoded motions, are predictable and can detract from the perception of robots as interactive agents. To address this issue, we have introduced a Seq2Seq-based neural network model that learns social behaviors from human–human interactions in an end-to-end manner. To mitigate the risk of invalid pose sequences during long-term behavior generation, we incorporated a generative adversarial network (GAN). This proposed method was tested using the humanoid robot, Pepper, in a simulated environment. Given the challenges in assessing the success of social behavior generation, we devised novel metrics to quantify the discrepancy between the generated and ground-truth behaviors. Our analysis reveals the impact of different networks on behavior generation performance and compares the efficacy of learning multiple behaviors versus a single behavior. We anticipate that our method will find application in various sectors, including home service, guide, delivery, educational, and virtual robots, thereby enhancing user interaction and enjoyment.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"14 1","pages":"0"},"PeriodicalIF":7.5000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonverbal social behavior generation for social robots using end-to-end learning\",\"authors\":\"Woo-Ri Ko, Minsu Jang, Jaeyeon Lee, Jaehong Kim\",\"doi\":\"10.1177/02783649231207974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social robots facilitate improved human–robot interactions through nonverbal behaviors such as handshakes or hugs. However, the traditional methods, which rely on precoded motions, are predictable and can detract from the perception of robots as interactive agents. To address this issue, we have introduced a Seq2Seq-based neural network model that learns social behaviors from human–human interactions in an end-to-end manner. To mitigate the risk of invalid pose sequences during long-term behavior generation, we incorporated a generative adversarial network (GAN). This proposed method was tested using the humanoid robot, Pepper, in a simulated environment. Given the challenges in assessing the success of social behavior generation, we devised novel metrics to quantify the discrepancy between the generated and ground-truth behaviors. Our analysis reveals the impact of different networks on behavior generation performance and compares the efficacy of learning multiple behaviors versus a single behavior. We anticipate that our method will find application in various sectors, including home service, guide, delivery, educational, and virtual robots, thereby enhancing user interaction and enjoyment.\",\"PeriodicalId\":54942,\"journal\":{\"name\":\"International Journal of Robotics Research\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Robotics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/02783649231207974\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robotics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/02783649231207974","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
Nonverbal social behavior generation for social robots using end-to-end learning
Social robots facilitate improved human–robot interactions through nonverbal behaviors such as handshakes or hugs. However, the traditional methods, which rely on precoded motions, are predictable and can detract from the perception of robots as interactive agents. To address this issue, we have introduced a Seq2Seq-based neural network model that learns social behaviors from human–human interactions in an end-to-end manner. To mitigate the risk of invalid pose sequences during long-term behavior generation, we incorporated a generative adversarial network (GAN). This proposed method was tested using the humanoid robot, Pepper, in a simulated environment. Given the challenges in assessing the success of social behavior generation, we devised novel metrics to quantify the discrepancy between the generated and ground-truth behaviors. Our analysis reveals the impact of different networks on behavior generation performance and compares the efficacy of learning multiple behaviors versus a single behavior. We anticipate that our method will find application in various sectors, including home service, guide, delivery, educational, and virtual robots, thereby enhancing user interaction and enjoyment.
期刊介绍:
The International Journal of Robotics Research (IJRR) has been a leading peer-reviewed publication in the field for over two decades. It holds the distinction of being the first scholarly journal dedicated to robotics research.
IJRR presents cutting-edge and thought-provoking original research papers, articles, and reviews that delve into groundbreaking trends, technical advancements, and theoretical developments in robotics. Renowned scholars and practitioners contribute to its content, offering their expertise and insights. This journal covers a wide range of topics, going beyond narrow technical advancements to encompass various aspects of robotics.
The primary aim of IJRR is to publish work that has lasting value for the scientific and technological advancement of the field. Only original, robust, and practical research that can serve as a foundation for further progress is considered for publication. The focus is on producing content that will remain valuable and relevant over time.
In summary, IJRR stands as a prestigious publication that drives innovation and knowledge in robotics research.