Yitao Zhang, Changxuan Wan, Keli Xiao, Qizhi Wan, Dexi Liu, Xiping Liu
{"title":"面向多领域语料库的面向方面共享的层次主题模型","authors":"Yitao Zhang, Changxuan Wan, Keli Xiao, Qizhi Wan, Dexi Liu, Xiping Liu","doi":"10.1145/3631352","DOIUrl":null,"url":null,"abstract":"Learning topic hierarchies from a multi-domain corpus is crucial in topic modeling as it reveals valuable structural information embedded within documents. Despite the extensive literature on hierarchical topic models, effectively discovering inter-topic correlations and differences among subtopics at the same level in the topic hierarchy, obtained from multiple domains, remains an unresolved challenge. This paper proposes an enhanced nested Chinese restaurant process (nCRP), nCRP+, by introducing an additional mechanism based on Chinese restaurant franchise (CRF) for aspect-sharing pattern extraction in the original nCRP. Subsequently, by employing the distribution extracted from nCRP+ as the prior distribution for topic hierarchy in the hierarchical Dirichlet processes (HDP), we develop a hierarchical topic model for multi-domain corpus, named rHDP. We describe the model with the analogy of Chinese restaurant franchise based on the central kitchen and propose a hierarchical Gibbs sampling scheme to infer the model. Our method effectively constructs well-established topic hierarchies, accurately reflecting diverse parent-child topic relationships, explicit topic aspect sharing correlations for inter-topics, and differences between these shared topics. To validate the efficacy of our approach, we conduct experiments using a renowned public dataset and an online collection of Chinese financial documents. The experimental results confirm the superiority of our method over the state-of-the-art techniques in identifying multi-domain topic hierarchies, according to multiple evaluation metrics.","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":"4 2","pages":"0"},"PeriodicalIF":5.4000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"rHDP: An Aspect Sharing-Enhanced Hierarchical Topic Model for Multi-Domain Corpus\",\"authors\":\"Yitao Zhang, Changxuan Wan, Keli Xiao, Qizhi Wan, Dexi Liu, Xiping Liu\",\"doi\":\"10.1145/3631352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning topic hierarchies from a multi-domain corpus is crucial in topic modeling as it reveals valuable structural information embedded within documents. Despite the extensive literature on hierarchical topic models, effectively discovering inter-topic correlations and differences among subtopics at the same level in the topic hierarchy, obtained from multiple domains, remains an unresolved challenge. This paper proposes an enhanced nested Chinese restaurant process (nCRP), nCRP+, by introducing an additional mechanism based on Chinese restaurant franchise (CRF) for aspect-sharing pattern extraction in the original nCRP. Subsequently, by employing the distribution extracted from nCRP+ as the prior distribution for topic hierarchy in the hierarchical Dirichlet processes (HDP), we develop a hierarchical topic model for multi-domain corpus, named rHDP. We describe the model with the analogy of Chinese restaurant franchise based on the central kitchen and propose a hierarchical Gibbs sampling scheme to infer the model. Our method effectively constructs well-established topic hierarchies, accurately reflecting diverse parent-child topic relationships, explicit topic aspect sharing correlations for inter-topics, and differences between these shared topics. To validate the efficacy of our approach, we conduct experiments using a renowned public dataset and an online collection of Chinese financial documents. The experimental results confirm the superiority of our method over the state-of-the-art techniques in identifying multi-domain topic hierarchies, according to multiple evaluation metrics.\",\"PeriodicalId\":50936,\"journal\":{\"name\":\"ACM Transactions on Information Systems\",\"volume\":\"4 2\",\"pages\":\"0\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3631352\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3631352","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
rHDP: An Aspect Sharing-Enhanced Hierarchical Topic Model for Multi-Domain Corpus
Learning topic hierarchies from a multi-domain corpus is crucial in topic modeling as it reveals valuable structural information embedded within documents. Despite the extensive literature on hierarchical topic models, effectively discovering inter-topic correlations and differences among subtopics at the same level in the topic hierarchy, obtained from multiple domains, remains an unresolved challenge. This paper proposes an enhanced nested Chinese restaurant process (nCRP), nCRP+, by introducing an additional mechanism based on Chinese restaurant franchise (CRF) for aspect-sharing pattern extraction in the original nCRP. Subsequently, by employing the distribution extracted from nCRP+ as the prior distribution for topic hierarchy in the hierarchical Dirichlet processes (HDP), we develop a hierarchical topic model for multi-domain corpus, named rHDP. We describe the model with the analogy of Chinese restaurant franchise based on the central kitchen and propose a hierarchical Gibbs sampling scheme to infer the model. Our method effectively constructs well-established topic hierarchies, accurately reflecting diverse parent-child topic relationships, explicit topic aspect sharing correlations for inter-topics, and differences between these shared topics. To validate the efficacy of our approach, we conduct experiments using a renowned public dataset and an online collection of Chinese financial documents. The experimental results confirm the superiority of our method over the state-of-the-art techniques in identifying multi-domain topic hierarchies, according to multiple evaluation metrics.
期刊介绍:
The ACM Transactions on Information Systems (TOIS) publishes papers on information retrieval (such as search engines, recommender systems) that contain:
new principled information retrieval models or algorithms with sound empirical validation;
observational, experimental and/or theoretical studies yielding new insights into information retrieval or information seeking;
accounts of applications of existing information retrieval techniques that shed light on the strengths and weaknesses of the techniques;
formalization of new information retrieval or information seeking tasks and of methods for evaluating the performance on those tasks;
development of content (text, image, speech, video, etc) analysis methods to support information retrieval and information seeking;
development of computational models of user information preferences and interaction behaviors;
creation and analysis of evaluation methodologies for information retrieval and information seeking; or
surveys of existing work that propose a significant synthesis.
The information retrieval scope of ACM Transactions on Information Systems (TOIS) appeals to industry practitioners for its wealth of creative ideas, and to academic researchers for its descriptions of their colleagues'' work.