{"title":"非o1 /非o139霍乱弧菌的遗传特征Mobilome:一种理解和区分新出现的环境细菌菌株的策略","authors":"Bright E. Igere, Uchechukwu U. Nwodo","doi":"10.4081/jbr.2023.11202","DOIUrl":null,"url":null,"abstract":"Acute diarrhea and cholera (AWD/C) result in more than 21000 to 143000 global mortality annually and are associated with Vibrio cholerae. The pathogen has shown increasing evolutionary/emerging dynamics linked with mobilome or ubiquitous nature of mobile integrative genetic and conjugative elements (MIGCE), however, such dynamics are rarely reported amongst somatic-antigen non-agglutinating Type-1/-139 V. cholerae (SA-NAG-T-1/139Vc). The study reports the genetic detection of mobilome-associated indices in SA-NAG-T-1/139Vc as a potential strategy for differentiating/discriminating emerging environmental bacteria. Presumptive V. cholerae isolates were retrieved from five water sources, while strains were characterized/serogrouped and confirmed using simplex and comparative-genomic-multiplex Polymerase Chain Reaction (PCR). Genomic island (GI-12det, GI-14det, GI-15det); Phages (TLC-phagedet, Kappa-phagedet) and ICEs of the SXT/R391 family genes (SXT/R391-ICEs integrase, SXT-Hotspot-IV, ICEVchInd5Hotspot-IV, ICEVchMoz10Hotspot-IV) were detected. Other rare ICE members such as the ICEVcBan8att gene and Vibrio Seventh Pandemic island detection (VSP-II Integrase, Prototypical VSP-II) were also detected. Results revealed that the 8.22% (61/742) SA-NAG-T-1/139Vc serogroup observed harbors the Vibrio Seventh Pandemic island integrase (34/61; 55.7%) and other rare genetic traits including; attB/attP (29/61; 47.5%, 14/61; 23%), integrative genetic elements (4/61; 6.56%), phage types (TLC-phagedet: 2/61; 3.28% and Kappa-phagedet: 7/61; 11.48%) as well as the integrase genes (INT1, Sul1, Sul2) (29/61: 47.5%; 21/61: 34.4%; 25/61: 41%). Such genetic detection of mobilome determinants/MIGCE suggests potential discriminatory tendencies amongst SA-NAG-T-1/139Vcwhich may be applied in mobilome typing of evolving/emerging environmental bacteria. The need to encourage the application of such mobilome typing indices and continuous study of these strains is suggestive of interest in controlling future potential emerging environmental strains.","PeriodicalId":42615,"journal":{"name":"Journal of Biological Research-Bollettino della Societa Italiana di Biologia Sperimentale","volume":"34 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic characterization of non-O1/non-O139 <i>Vibrio cholerae</i> mobilome: a strategy for understanding and discriminating emerging environmental bacterial strains\",\"authors\":\"Bright E. Igere, Uchechukwu U. Nwodo\",\"doi\":\"10.4081/jbr.2023.11202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Acute diarrhea and cholera (AWD/C) result in more than 21000 to 143000 global mortality annually and are associated with Vibrio cholerae. The pathogen has shown increasing evolutionary/emerging dynamics linked with mobilome or ubiquitous nature of mobile integrative genetic and conjugative elements (MIGCE), however, such dynamics are rarely reported amongst somatic-antigen non-agglutinating Type-1/-139 V. cholerae (SA-NAG-T-1/139Vc). The study reports the genetic detection of mobilome-associated indices in SA-NAG-T-1/139Vc as a potential strategy for differentiating/discriminating emerging environmental bacteria. Presumptive V. cholerae isolates were retrieved from five water sources, while strains were characterized/serogrouped and confirmed using simplex and comparative-genomic-multiplex Polymerase Chain Reaction (PCR). Genomic island (GI-12det, GI-14det, GI-15det); Phages (TLC-phagedet, Kappa-phagedet) and ICEs of the SXT/R391 family genes (SXT/R391-ICEs integrase, SXT-Hotspot-IV, ICEVchInd5Hotspot-IV, ICEVchMoz10Hotspot-IV) were detected. Other rare ICE members such as the ICEVcBan8att gene and Vibrio Seventh Pandemic island detection (VSP-II Integrase, Prototypical VSP-II) were also detected. Results revealed that the 8.22% (61/742) SA-NAG-T-1/139Vc serogroup observed harbors the Vibrio Seventh Pandemic island integrase (34/61; 55.7%) and other rare genetic traits including; attB/attP (29/61; 47.5%, 14/61; 23%), integrative genetic elements (4/61; 6.56%), phage types (TLC-phagedet: 2/61; 3.28% and Kappa-phagedet: 7/61; 11.48%) as well as the integrase genes (INT1, Sul1, Sul2) (29/61: 47.5%; 21/61: 34.4%; 25/61: 41%). Such genetic detection of mobilome determinants/MIGCE suggests potential discriminatory tendencies amongst SA-NAG-T-1/139Vcwhich may be applied in mobilome typing of evolving/emerging environmental bacteria. The need to encourage the application of such mobilome typing indices and continuous study of these strains is suggestive of interest in controlling future potential emerging environmental strains.\",\"PeriodicalId\":42615,\"journal\":{\"name\":\"Journal of Biological Research-Bollettino della Societa Italiana di Biologia Sperimentale\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Research-Bollettino della Societa Italiana di Biologia Sperimentale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4081/jbr.2023.11202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Research-Bollettino della Societa Italiana di Biologia Sperimentale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4081/jbr.2023.11202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOLOGY","Score":null,"Total":0}
Genetic characterization of non-O1/non-O139 <i>Vibrio cholerae</i> mobilome: a strategy for understanding and discriminating emerging environmental bacterial strains
Acute diarrhea and cholera (AWD/C) result in more than 21000 to 143000 global mortality annually and are associated with Vibrio cholerae. The pathogen has shown increasing evolutionary/emerging dynamics linked with mobilome or ubiquitous nature of mobile integrative genetic and conjugative elements (MIGCE), however, such dynamics are rarely reported amongst somatic-antigen non-agglutinating Type-1/-139 V. cholerae (SA-NAG-T-1/139Vc). The study reports the genetic detection of mobilome-associated indices in SA-NAG-T-1/139Vc as a potential strategy for differentiating/discriminating emerging environmental bacteria. Presumptive V. cholerae isolates were retrieved from five water sources, while strains were characterized/serogrouped and confirmed using simplex and comparative-genomic-multiplex Polymerase Chain Reaction (PCR). Genomic island (GI-12det, GI-14det, GI-15det); Phages (TLC-phagedet, Kappa-phagedet) and ICEs of the SXT/R391 family genes (SXT/R391-ICEs integrase, SXT-Hotspot-IV, ICEVchInd5Hotspot-IV, ICEVchMoz10Hotspot-IV) were detected. Other rare ICE members such as the ICEVcBan8att gene and Vibrio Seventh Pandemic island detection (VSP-II Integrase, Prototypical VSP-II) were also detected. Results revealed that the 8.22% (61/742) SA-NAG-T-1/139Vc serogroup observed harbors the Vibrio Seventh Pandemic island integrase (34/61; 55.7%) and other rare genetic traits including; attB/attP (29/61; 47.5%, 14/61; 23%), integrative genetic elements (4/61; 6.56%), phage types (TLC-phagedet: 2/61; 3.28% and Kappa-phagedet: 7/61; 11.48%) as well as the integrase genes (INT1, Sul1, Sul2) (29/61: 47.5%; 21/61: 34.4%; 25/61: 41%). Such genetic detection of mobilome determinants/MIGCE suggests potential discriminatory tendencies amongst SA-NAG-T-1/139Vcwhich may be applied in mobilome typing of evolving/emerging environmental bacteria. The need to encourage the application of such mobilome typing indices and continuous study of these strains is suggestive of interest in controlling future potential emerging environmental strains.
期刊介绍:
The Journal of Biological Research – Bollettino della Società Italiana di Biologia Sperimentale is one of the oldest journals in Biology. Founded in 1925 the journal is available in Medline until 2001 and Scopus since 2014. The Journal of Biological Research – Bollettino della Società Italiana di Biologia Sperimentale is an online-only peer-reviewed journal which welcomes papers dealing with any aspect of experimental biology. Papers concerning clinical topics can be accepted only if they include experimental laboratory data. Original communications, review articles or short communications may be submitted.