{"title":"在斯洛文尼亚语到英语的机器翻译中使用子词单元的实用方面","authors":"Gregor Donaj, Mirjam Sepesy Maučec","doi":"10.4312/slo2.0.2023.1.275-301","DOIUrl":null,"url":null,"abstract":"Večina sodobnih sistemov za strojno prevajanje temelji na arhitekturi nevronskih mrež. To velja za spletne ponudnike strojnega prevajanja, za raziskovalne sisteme in za orodja, ki so lahko v pomoč poklicnim prevajalcem v njihovi praksi. Čeprav lahko sisteme nevronskih mrež uporabljamo na običajnih centralnih procesnih enotah osebnih računalnikov in strežnikov, je za delovanje s smiselno hitrostjo potrebna uporaba grafičnih procesnih enot. Pri tem smo omejeni z velikostjo slovarja, kar zmanjšuje kakovost prevodov. Velikost slovarja besednih enot je še posebej pereč problem visoko pregibnih jezikov. Rešujemo ga z uporabo podbesednih enot, s katerimi dosežemo večjo pokritost jezika. V članku predstavljamo različne metode razcepljanja besed na podbesedne enote z različno velikimi slovarji in primerjamo njihovo uporabo v strojnem prevajalniku za jezikovni par slovenščina-angleščina. V primerjavo vključujemo še prevajalnik brez razcepljanja besed. Predstavljamo rezultate uspešnosti prevajanja z metriko BLEU, hitrosti učenja modelov in hitrosti prevajanja ter velikosti modelov. Dodajamo pregled praktičnih vidikov uporabe podbesednih enot v strojnem prevajalniku, ki ga uporabljamo skupaj z orodji za računalniško podprto prevajanje.","PeriodicalId":36888,"journal":{"name":"Slovenscina 2.0","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Praktični vidiki uporabe podbesednih enot v strojnem prevajanju slovenščina-angleščina\",\"authors\":\"Gregor Donaj, Mirjam Sepesy Maučec\",\"doi\":\"10.4312/slo2.0.2023.1.275-301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Večina sodobnih sistemov za strojno prevajanje temelji na arhitekturi nevronskih mrež. To velja za spletne ponudnike strojnega prevajanja, za raziskovalne sisteme in za orodja, ki so lahko v pomoč poklicnim prevajalcem v njihovi praksi. Čeprav lahko sisteme nevronskih mrež uporabljamo na običajnih centralnih procesnih enotah osebnih računalnikov in strežnikov, je za delovanje s smiselno hitrostjo potrebna uporaba grafičnih procesnih enot. Pri tem smo omejeni z velikostjo slovarja, kar zmanjšuje kakovost prevodov. Velikost slovarja besednih enot je še posebej pereč problem visoko pregibnih jezikov. Rešujemo ga z uporabo podbesednih enot, s katerimi dosežemo večjo pokritost jezika. V članku predstavljamo različne metode razcepljanja besed na podbesedne enote z različno velikimi slovarji in primerjamo njihovo uporabo v strojnem prevajalniku za jezikovni par slovenščina-angleščina. V primerjavo vključujemo še prevajalnik brez razcepljanja besed. Predstavljamo rezultate uspešnosti prevajanja z metriko BLEU, hitrosti učenja modelov in hitrosti prevajanja ter velikosti modelov. Dodajamo pregled praktičnih vidikov uporabe podbesednih enot v strojnem prevajalniku, ki ga uporabljamo skupaj z orodji za računalniško podprto prevajanje.\",\"PeriodicalId\":36888,\"journal\":{\"name\":\"Slovenscina 2.0\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Slovenscina 2.0\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4312/slo2.0.2023.1.275-301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Slovenscina 2.0","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4312/slo2.0.2023.1.275-301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Arts and Humanities","Score":null,"Total":0}
Praktični vidiki uporabe podbesednih enot v strojnem prevajanju slovenščina-angleščina
Večina sodobnih sistemov za strojno prevajanje temelji na arhitekturi nevronskih mrež. To velja za spletne ponudnike strojnega prevajanja, za raziskovalne sisteme in za orodja, ki so lahko v pomoč poklicnim prevajalcem v njihovi praksi. Čeprav lahko sisteme nevronskih mrež uporabljamo na običajnih centralnih procesnih enotah osebnih računalnikov in strežnikov, je za delovanje s smiselno hitrostjo potrebna uporaba grafičnih procesnih enot. Pri tem smo omejeni z velikostjo slovarja, kar zmanjšuje kakovost prevodov. Velikost slovarja besednih enot je še posebej pereč problem visoko pregibnih jezikov. Rešujemo ga z uporabo podbesednih enot, s katerimi dosežemo večjo pokritost jezika. V članku predstavljamo različne metode razcepljanja besed na podbesedne enote z različno velikimi slovarji in primerjamo njihovo uporabo v strojnem prevajalniku za jezikovni par slovenščina-angleščina. V primerjavo vključujemo še prevajalnik brez razcepljanja besed. Predstavljamo rezultate uspešnosti prevajanja z metriko BLEU, hitrosti učenja modelov in hitrosti prevajanja ter velikosti modelov. Dodajamo pregled praktičnih vidikov uporabe podbesednih enot v strojnem prevajalniku, ki ga uporabljamo skupaj z orodji za računalniško podprto prevajanje.