{"title":"利用功能时间序列模式预测每小时臭氧浓度——以孟加拉国沿海地区为例","authors":"Azizur Rahman, N M Refat Nasher","doi":"10.1007/s10666-023-09928-8","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":50515,"journal":{"name":"Environmental Modeling & Assessment","volume":"24 1","pages":"0"},"PeriodicalIF":2.7000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting Hourly Ozone Concentration Using Functional Time Series Model—A Case Study in the Coastal Area of Bangladesh\",\"authors\":\"Azizur Rahman, N M Refat Nasher\",\"doi\":\"10.1007/s10666-023-09928-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":50515,\"journal\":{\"name\":\"Environmental Modeling & Assessment\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modeling & Assessment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10666-023-09928-8\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modeling & Assessment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10666-023-09928-8","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
期刊介绍:
Environmental Modeling & Assessment strives to achieve this by publishing high quality, peer-reviewed papers that may be regarded as either instances of best practice, or as studies that advance the evolution and applicability of the theories and techniques of modeling and assessment. Consequently, Environmental Modeling & Assessment will publish high quality papers on all aspects of environmental problems that contain a significant quantitative modeling or analytic component, interpreted broadly. In particular, we are interested both in detailed scientific models of specific environmental problems and in large scale models of the global environment.
We invite models of environmental problems and phenomena that utilise, in an original way, the techniques of ordinary and partial differential equations, simulation, statistics and applied probability, control theory, operations research, mathematical economics, and game theory.
Emphasis will be placed on the novelty of the model, the environmental relevance of the problem, and the generic applicability of the techniques used. Generally, papers should be written in a manner that is accessible to a wide interdisciplinary audience.