{"title":"高速公路的进出弧线:它们在变分法中的精确计算","authors":"L. Bayón, P. Fortuny Ayuso, J.M. Grau, M.M. Ruiz","doi":"10.4153/s000843952300070x","DOIUrl":null,"url":null,"abstract":"Abstract We settle the question of how to compute the entry and leaving arcs for turnpikes in autonomous variational problems, in the one-dimensional case using the phase space of the vector field associated with the Euler equation, and the initial/final and/or the transversality condition. The results hinge on the realization that extremals are the contours of a well-known function and that the transversality condition is (generically) a curve. An approximation algorithm is presented, and an example is included for completeness.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entry and leaving arcs of turnpikes: their exact computation in the calculus of variations\",\"authors\":\"L. Bayón, P. Fortuny Ayuso, J.M. Grau, M.M. Ruiz\",\"doi\":\"10.4153/s000843952300070x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We settle the question of how to compute the entry and leaving arcs for turnpikes in autonomous variational problems, in the one-dimensional case using the phase space of the vector field associated with the Euler equation, and the initial/final and/or the transversality condition. The results hinge on the realization that extremals are the contours of a well-known function and that the transversality condition is (generically) a curve. An approximation algorithm is presented, and an example is included for completeness.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4153/s000843952300070x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s000843952300070x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Entry and leaving arcs of turnpikes: their exact computation in the calculus of variations
Abstract We settle the question of how to compute the entry and leaving arcs for turnpikes in autonomous variational problems, in the one-dimensional case using the phase space of the vector field associated with the Euler equation, and the initial/final and/or the transversality condition. The results hinge on the realization that extremals are the contours of a well-known function and that the transversality condition is (generically) a curve. An approximation algorithm is presented, and an example is included for completeness.