{"title":"比较定性和定量文本分析方法与基于文档的社会网络分析相结合,了解政策网络","authors":"Anna Malandrino","doi":"10.1007/s11135-023-01753-1","DOIUrl":null,"url":null,"abstract":"Abstract The literature that reflects on the application of Social Network Analysis (SNA) in combination with other methods is flourishing. However, there is a dearth of studies that compare qualitative and quantitative methods to complement structural SNA. This article addresses this gap by systematically discussing the advantages and disadvantages relating to the use of qualitative text analysis and interviewing as well as quantitative text mining and Natural Language Processing (NLP) techniques such as word frequency analysis, cluster analysis, topic modeling, and topic classification to understand policy networks. This method-oriented comparative study features two empirical studies that respectively examine the Employment Thematic Network, established under the aegis of the European Commission, and the intergovernmental cooperation network set up within the Bologna Process. The article compares and discusses the underlying research processes in terms of time, human resources, research resources, unobtrusiveness, and effectiveness toward the goal of telling meaningful stories about the examined networks in light of specific guiding hypotheses. In doing so, the paper nurtures the debate on mixed-methods research on social networks amidst the well-known paradigm war between qualitative and quantitative methods in network analysis.","PeriodicalId":49649,"journal":{"name":"Quality & Quantity","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparing qualitative and quantitative text analysis methods in combination with document-based social network analysis to understand policy networks\",\"authors\":\"Anna Malandrino\",\"doi\":\"10.1007/s11135-023-01753-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The literature that reflects on the application of Social Network Analysis (SNA) in combination with other methods is flourishing. However, there is a dearth of studies that compare qualitative and quantitative methods to complement structural SNA. This article addresses this gap by systematically discussing the advantages and disadvantages relating to the use of qualitative text analysis and interviewing as well as quantitative text mining and Natural Language Processing (NLP) techniques such as word frequency analysis, cluster analysis, topic modeling, and topic classification to understand policy networks. This method-oriented comparative study features two empirical studies that respectively examine the Employment Thematic Network, established under the aegis of the European Commission, and the intergovernmental cooperation network set up within the Bologna Process. The article compares and discusses the underlying research processes in terms of time, human resources, research resources, unobtrusiveness, and effectiveness toward the goal of telling meaningful stories about the examined networks in light of specific guiding hypotheses. In doing so, the paper nurtures the debate on mixed-methods research on social networks amidst the well-known paradigm war between qualitative and quantitative methods in network analysis.\",\"PeriodicalId\":49649,\"journal\":{\"name\":\"Quality & Quantity\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quality & Quantity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11135-023-01753-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality & Quantity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11135-023-01753-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Comparing qualitative and quantitative text analysis methods in combination with document-based social network analysis to understand policy networks
Abstract The literature that reflects on the application of Social Network Analysis (SNA) in combination with other methods is flourishing. However, there is a dearth of studies that compare qualitative and quantitative methods to complement structural SNA. This article addresses this gap by systematically discussing the advantages and disadvantages relating to the use of qualitative text analysis and interviewing as well as quantitative text mining and Natural Language Processing (NLP) techniques such as word frequency analysis, cluster analysis, topic modeling, and topic classification to understand policy networks. This method-oriented comparative study features two empirical studies that respectively examine the Employment Thematic Network, established under the aegis of the European Commission, and the intergovernmental cooperation network set up within the Bologna Process. The article compares and discusses the underlying research processes in terms of time, human resources, research resources, unobtrusiveness, and effectiveness toward the goal of telling meaningful stories about the examined networks in light of specific guiding hypotheses. In doing so, the paper nurtures the debate on mixed-methods research on social networks amidst the well-known paradigm war between qualitative and quantitative methods in network analysis.
期刊介绍:
Quality and Quantity constitutes a point of reference for European and non-European scholars to discuss instruments of methodology for more rigorous scientific results in the social sciences. In the era of biggish data, the journal also provides a publication venue for data scientists who are interested in proposing a new indicator to measure the latent aspects of social, cultural, and political events. Rather than leaning towards one specific methodological school, the journal publishes papers on a mixed method of quantitative and qualitative data. Furthermore, the journal’s key aim is to tackle some methodological pluralism across research cultures. In this context, the journal is open to papers addressing some general logic of empirical research and analysis of the validity and verification of social laws. Thus The journal accepts papers on science metrics and publication ethics and, their related issues affecting methodological practices among researchers.
Quality and Quantity is an interdisciplinary journal which systematically correlates disciplines such as data and information sciences with the other humanities and social sciences. The journal extends discussion of interesting contributions in methodology to scholars worldwide, to promote the scientific development of social research.