{"title":"螺旋选矿厂的轴向或逐转颗粒回收","authors":"L. Boisvert, M. Sadeghi, C. Rochefort, C. Bazin","doi":"10.1080/19236026.2023.2251101","DOIUrl":null,"url":null,"abstract":"ABSTRACTSpiral concentrators (“spirals”) are commonly used to separate valuable heavy minerals from light gangue minerals by gravity. This paper examines the classification of particles as they flow down a spiral concentrator and relates the results to the number of turns. The tests show the possibility of reproducing the performance of industrial spirals with a spiral operating in a closed circuit in a laboratory. Results show that knowing the mineral size distributions in the spiral feed is necessary to forecast spiral performance. Further, in the case of iron ore processing, the separation process is practically complete after four turns, with wash water affecting the process rate of recovery. This observation is readily explained by considering the mineral size distribution.RÉSUMÉLes spirales gravimétriques (“spirales”) sont couramment utilisées pour séparer par gravité les minéraux lourds précieux des minéraux légers de gangue. Cet article examine la classification des particules qui s’écoulent le long d’une spirale et met en relation les résultats avec le nombre de tours. Les tests montrent qu’il est possible de reproduire les performances des spirales industrielles avec une spirale fonctionnant en circuit fermé dans un laboratoire. Les résultats montrent qu’il est nécessaire de connaître la distribution par tailles des minéraux dans l’alimentation de la spirale pour prévoir les performances de celle-ci. De plus, dans le cas du traitement du minerai de fer, le processus de séparation est pratiquement terminé après quatre tours, l’eau de lavage affectant le taux de récupération du procédé. Cette observation s’explique facilement si l’on considère la distribution par tailles des minéraux.KEYWORDS: Grade-recovery curve, Gravity concentration, Iron ore, Partition curve, Spiral concentratorMOTS-CLÉS: concentration par gravité, courbe de partage, courbe récupération-teneur, minerai de fer, spirale gravimétrique ACKNOWLEDGMENTSThis project was made possible by a grant from the Quebec Government via the Fonds de recherche du Québec – Nature et technologies (FRQNT) organization. The financial support of the company ArcelorMittal Mining Canada is also acknowledged. Finally, the authors thank Minerals Technologies for allowing the purchase of the WW6Plus spiral for the test work.DISCLOSURE STATEMENTNo potential conflict of interest was reported by the authors.REVIEW STATEMENTThis article was reviewed and approved for publication by the Canadian Mineral Processing Society of the Canadian Institute of Mining, Metallurgy and Petroleum.ETHICS APPROVAL AND CONSENT TO PARTICIPATEThere are no ethical issues associated with this manuscript.Additional informationFundingThis work was supported by the Fonds de recherche du Québec - Nature et technologies (FRQNT-2020-MN-284070 and FRQNT-2015-MI-191774).Notes on contributorsL. BoisvertLaurence Boisvert is a Candidate to the Engineering Profession (CEP), currently working at Corem as a physical separation researcher. He graduated from Laval University in 2020, where he is currently completing his Master’s degree in mining and metallurgical engineering.M. SadeghiMaryam Sadeghi is a metallurgist at CIMA+ with 11 years of engineering experience, including 7 years in a manufacturing environment. She has been working with consulting engineering firms since 2019. She completed her bachelor’s degree in mining engineering in her home country, Iran, in 2004. She arrived in Canada in 2012 to pursue her studies in mineral processing at Laval University, where she earned her Master’s degree in 2014 and her PhD in mining engineering in 2021. Her research focus is primarily iron ore processing, and her projects are mainly related to process design and optimization.C. RochefortChristian Rochefort is a mineral processing engineer holding bachelor’s and master’s degrees from Laval University. He has more than 20 years of experience in the mining industry, working on research and development and process development projects. He specializes in grinding, physical separation, and flotation of iron ore. He currently holds the position of Expert in Mineral Processing at ArcelorMittal Mining Canada.C. BazinClaude Bazin graduated with a bachelor’s degree in metallurgical engineering from Laval University in 1980. He obtained a PhD in 1991. From 1987 to 1990, he worked for Brunswick Mining and Smelting (Noranda) as a Research Engineer and Process Control Engineer, before accepting the position of Senior Metallurgist at the Heath Steele concentrator in New Brunswick. In 1992, he accepted the position of Professor at Laval University, a position he still holds.","PeriodicalId":197002,"journal":{"name":"CIM Journal","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Axial or turn-by-turn particle recovery in a spiral concentrator\",\"authors\":\"L. Boisvert, M. Sadeghi, C. Rochefort, C. Bazin\",\"doi\":\"10.1080/19236026.2023.2251101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTSpiral concentrators (“spirals”) are commonly used to separate valuable heavy minerals from light gangue minerals by gravity. This paper examines the classification of particles as they flow down a spiral concentrator and relates the results to the number of turns. The tests show the possibility of reproducing the performance of industrial spirals with a spiral operating in a closed circuit in a laboratory. Results show that knowing the mineral size distributions in the spiral feed is necessary to forecast spiral performance. Further, in the case of iron ore processing, the separation process is practically complete after four turns, with wash water affecting the process rate of recovery. This observation is readily explained by considering the mineral size distribution.RÉSUMÉLes spirales gravimétriques (“spirales”) sont couramment utilisées pour séparer par gravité les minéraux lourds précieux des minéraux légers de gangue. Cet article examine la classification des particules qui s’écoulent le long d’une spirale et met en relation les résultats avec le nombre de tours. Les tests montrent qu’il est possible de reproduire les performances des spirales industrielles avec une spirale fonctionnant en circuit fermé dans un laboratoire. Les résultats montrent qu’il est nécessaire de connaître la distribution par tailles des minéraux dans l’alimentation de la spirale pour prévoir les performances de celle-ci. De plus, dans le cas du traitement du minerai de fer, le processus de séparation est pratiquement terminé après quatre tours, l’eau de lavage affectant le taux de récupération du procédé. Cette observation s’explique facilement si l’on considère la distribution par tailles des minéraux.KEYWORDS: Grade-recovery curve, Gravity concentration, Iron ore, Partition curve, Spiral concentratorMOTS-CLÉS: concentration par gravité, courbe de partage, courbe récupération-teneur, minerai de fer, spirale gravimétrique ACKNOWLEDGMENTSThis project was made possible by a grant from the Quebec Government via the Fonds de recherche du Québec – Nature et technologies (FRQNT) organization. The financial support of the company ArcelorMittal Mining Canada is also acknowledged. Finally, the authors thank Minerals Technologies for allowing the purchase of the WW6Plus spiral for the test work.DISCLOSURE STATEMENTNo potential conflict of interest was reported by the authors.REVIEW STATEMENTThis article was reviewed and approved for publication by the Canadian Mineral Processing Society of the Canadian Institute of Mining, Metallurgy and Petroleum.ETHICS APPROVAL AND CONSENT TO PARTICIPATEThere are no ethical issues associated with this manuscript.Additional informationFundingThis work was supported by the Fonds de recherche du Québec - Nature et technologies (FRQNT-2020-MN-284070 and FRQNT-2015-MI-191774).Notes on contributorsL. BoisvertLaurence Boisvert is a Candidate to the Engineering Profession (CEP), currently working at Corem as a physical separation researcher. He graduated from Laval University in 2020, where he is currently completing his Master’s degree in mining and metallurgical engineering.M. SadeghiMaryam Sadeghi is a metallurgist at CIMA+ with 11 years of engineering experience, including 7 years in a manufacturing environment. She has been working with consulting engineering firms since 2019. She completed her bachelor’s degree in mining engineering in her home country, Iran, in 2004. She arrived in Canada in 2012 to pursue her studies in mineral processing at Laval University, where she earned her Master’s degree in 2014 and her PhD in mining engineering in 2021. Her research focus is primarily iron ore processing, and her projects are mainly related to process design and optimization.C. RochefortChristian Rochefort is a mineral processing engineer holding bachelor’s and master’s degrees from Laval University. He has more than 20 years of experience in the mining industry, working on research and development and process development projects. He specializes in grinding, physical separation, and flotation of iron ore. He currently holds the position of Expert in Mineral Processing at ArcelorMittal Mining Canada.C. BazinClaude Bazin graduated with a bachelor’s degree in metallurgical engineering from Laval University in 1980. He obtained a PhD in 1991. From 1987 to 1990, he worked for Brunswick Mining and Smelting (Noranda) as a Research Engineer and Process Control Engineer, before accepting the position of Senior Metallurgist at the Heath Steele concentrator in New Brunswick. In 1992, he accepted the position of Professor at Laval University, a position he still holds.\",\"PeriodicalId\":197002,\"journal\":{\"name\":\"CIM Journal\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CIM Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19236026.2023.2251101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CIM Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19236026.2023.2251101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
摘要螺旋选矿厂(简称螺旋选矿厂)是一种常用的利用重力将有价值的重矿物从轻脉石矿物中分离出来的选矿厂。本文研究了粒子沿螺旋浓缩器流动时的分类,并将结果与旋转数联系起来。实验结果表明,在实验室中,用闭环操作的螺旋再现工业螺旋的性能是可能的。结果表明,了解螺旋给料中矿物粒度分布是预测螺旋性能的必要条件。此外,在铁矿选矿的情况下,分离过程实际上是在四转之后完成的,洗涤水影响了工艺回收率。考虑矿物粒度分布很容易解释这一观察结果。RÉSUMÉLes spirales gravimsamtriques (" spirales "),第1部分:使用sames pour samsamer par gravisles,最小的samsamer,最小的samsamer,最小的samsamer,最小的samsamer,最小的samsamer,最小的samsamer,最小的samsamer,最小的samsamer,最小的samsamer,最大的samsamer。这篇文章研究了一些特殊的分类,例如,“变质”的个体不能长时间地旋转,而“变质”的个体不能长时间地旋转。这些测试将测试工业用螺旋结构的可能重现的性能,以及在实验室中使用的螺旋结构功能电路。3 .在分配的过程中,尽可能多地利用最小的交换交换器,尽可能多地利用最小的交换交换器,尽可能多地利用最小的交换交换器,尽可能多地利用最小的交换交换器。此外,还包括下列情况:1 .在处理过程中,在处理过程中,在处理过程中,在处理过程中,在处理过程中,在处理过程中,在处理过程中,在处理过程中,在处理过程中,在处理过程中,在处理过程中。在考虑到最低限度的薪金分配情况时,观察到“明确的便利”是不可能的。关键词:品位-回收率曲线,重力浓缩,铁矿石,分割曲线,螺旋concentratorMOTS-CLÉS:重力浓缩,courbe de partage, courbe rs - 2013.2013.10, minerai de fer,螺旋重力。本项目由魁北克省政府通过quqnt自然与技术基金会资助。安赛乐米塔尔矿业加拿大公司的财政支持也得到了承认。最后,作者感谢Minerals Technologies公司允许为测试工作购买WW6Plus螺旋。声明作者未报告潜在的利益冲突。本文经加拿大矿业、冶金和石油学会的加拿大矿物加工学会审查并批准发表。伦理批准和参与同意本文不涉及伦理问题。本研究得到了法国qu- Nature et technologies基金会(FRQNT-2020-MN-284070和FRQNT-2015-MI-191774)的支持。关于贡献者的说明。BoisvertLaurence Boisvert是工程专业(CEP)的候选人,目前在Corem担任物理分离研究员。他于2020年毕业于拉瓦尔大学,目前正在攻读采矿与冶金工程硕士学位。SadeghiMaryam Sadeghi是CIMA+的冶金学家,拥有11年的工程经验,其中7年在制造环境中工作。自2019年以来,她一直在咨询工程公司工作。2004年,她在祖国伊朗完成了采矿工程学士学位。她于2012年来到加拿大,在拉瓦尔大学(Laval University)攻读矿物加工专业,并于2014年获得硕士学位,2021年获得采矿工程博士学位。主要研究方向为铁矿石加工,项目主要与工艺设计与优化相关。christian Rochefort是一名矿物加工工程师,拥有拉瓦尔大学学士和硕士学位。他在采矿行业拥有20多年的经验,从事研发和工艺开发项目。他专门从事铁矿石的研磨、物理分离和浮选。他目前担任ArcelorMittal Mining Canada.C的矿物加工专家。bazinclude, 1980年毕业于拉瓦尔大学,获得冶金工程学士学位。他1991年获得博士学位。从1987年到1990年,他在Brunswick Mining and冶炼(Noranda)担任研究工程师和过程控制工程师,然后在New Brunswick的Heath steel选矿厂担任高级冶金学家。1992年,他接受了拉瓦尔大学(Laval University)教授的职位,并一直担任该职位。
Axial or turn-by-turn particle recovery in a spiral concentrator
ABSTRACTSpiral concentrators (“spirals”) are commonly used to separate valuable heavy minerals from light gangue minerals by gravity. This paper examines the classification of particles as they flow down a spiral concentrator and relates the results to the number of turns. The tests show the possibility of reproducing the performance of industrial spirals with a spiral operating in a closed circuit in a laboratory. Results show that knowing the mineral size distributions in the spiral feed is necessary to forecast spiral performance. Further, in the case of iron ore processing, the separation process is practically complete after four turns, with wash water affecting the process rate of recovery. This observation is readily explained by considering the mineral size distribution.RÉSUMÉLes spirales gravimétriques (“spirales”) sont couramment utilisées pour séparer par gravité les minéraux lourds précieux des minéraux légers de gangue. Cet article examine la classification des particules qui s’écoulent le long d’une spirale et met en relation les résultats avec le nombre de tours. Les tests montrent qu’il est possible de reproduire les performances des spirales industrielles avec une spirale fonctionnant en circuit fermé dans un laboratoire. Les résultats montrent qu’il est nécessaire de connaître la distribution par tailles des minéraux dans l’alimentation de la spirale pour prévoir les performances de celle-ci. De plus, dans le cas du traitement du minerai de fer, le processus de séparation est pratiquement terminé après quatre tours, l’eau de lavage affectant le taux de récupération du procédé. Cette observation s’explique facilement si l’on considère la distribution par tailles des minéraux.KEYWORDS: Grade-recovery curve, Gravity concentration, Iron ore, Partition curve, Spiral concentratorMOTS-CLÉS: concentration par gravité, courbe de partage, courbe récupération-teneur, minerai de fer, spirale gravimétrique ACKNOWLEDGMENTSThis project was made possible by a grant from the Quebec Government via the Fonds de recherche du Québec – Nature et technologies (FRQNT) organization. The financial support of the company ArcelorMittal Mining Canada is also acknowledged. Finally, the authors thank Minerals Technologies for allowing the purchase of the WW6Plus spiral for the test work.DISCLOSURE STATEMENTNo potential conflict of interest was reported by the authors.REVIEW STATEMENTThis article was reviewed and approved for publication by the Canadian Mineral Processing Society of the Canadian Institute of Mining, Metallurgy and Petroleum.ETHICS APPROVAL AND CONSENT TO PARTICIPATEThere are no ethical issues associated with this manuscript.Additional informationFundingThis work was supported by the Fonds de recherche du Québec - Nature et technologies (FRQNT-2020-MN-284070 and FRQNT-2015-MI-191774).Notes on contributorsL. BoisvertLaurence Boisvert is a Candidate to the Engineering Profession (CEP), currently working at Corem as a physical separation researcher. He graduated from Laval University in 2020, where he is currently completing his Master’s degree in mining and metallurgical engineering.M. SadeghiMaryam Sadeghi is a metallurgist at CIMA+ with 11 years of engineering experience, including 7 years in a manufacturing environment. She has been working with consulting engineering firms since 2019. She completed her bachelor’s degree in mining engineering in her home country, Iran, in 2004. She arrived in Canada in 2012 to pursue her studies in mineral processing at Laval University, where she earned her Master’s degree in 2014 and her PhD in mining engineering in 2021. Her research focus is primarily iron ore processing, and her projects are mainly related to process design and optimization.C. RochefortChristian Rochefort is a mineral processing engineer holding bachelor’s and master’s degrees from Laval University. He has more than 20 years of experience in the mining industry, working on research and development and process development projects. He specializes in grinding, physical separation, and flotation of iron ore. He currently holds the position of Expert in Mineral Processing at ArcelorMittal Mining Canada.C. BazinClaude Bazin graduated with a bachelor’s degree in metallurgical engineering from Laval University in 1980. He obtained a PhD in 1991. From 1987 to 1990, he worked for Brunswick Mining and Smelting (Noranda) as a Research Engineer and Process Control Engineer, before accepting the position of Senior Metallurgist at the Heath Steele concentrator in New Brunswick. In 1992, he accepted the position of Professor at Laval University, a position he still holds.