{"title":"计算和测量智能虾养殖系统的大小和胃饱度","authors":"Yu-Kai Lee, Bo-Yi Lin, Tien-Hsiung Weng, Chien-Kang Huang, Chen Liu, Chih-Chin Liu, Shih-Shun Lin, Han-Ching Wang","doi":"10.1080/09540091.2023.2268878","DOIUrl":null,"url":null,"abstract":"The penaeid shrimp farming industry is experiencing rapid growth. To reduce costs and labour, automation techniques such as counting and size estimation are increasingly being adopted. Feeding based on the degree of stomach fullness can significantly reduce food waste and water contamination. Therefore, we propose an intelligent shrimp farming system that includes shrimp detection, measurement of approximated shrimp length, shrimp quantity, and two methods for determining the degree of digestive tract fullness. We introduce AR-YOLOv5 (Angular Rotation YOLOv5) in the system to enhance both shrimp growth and the environmental sustainability of shrimp farming. Our experiments were conducted in a real shrimp farming environment. The length and quantity are estimated based on the bounding box, and the level of stomach fullness is approximated using the ratio of the shrimp´s digestive tract to its body size. In terms of detection performance, our proposed method achieves a precision rate of 97.70%, a recall rate of 91.42%, a mean average precision of 94.46%, and an F1-score of 95.42% using AR-YOLOv5. Furthermore, our stomach fullness determined method achieves an accuracy of 88.8%, a precision rate of 91.7%, a recall rate of 90.9%, and an F1-score of 91.3% in real shrimp farming environments.","PeriodicalId":50629,"journal":{"name":"Connection Science","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Counting and measuring the size and stomach fullness levels for an intelligent shrimp farming system\",\"authors\":\"Yu-Kai Lee, Bo-Yi Lin, Tien-Hsiung Weng, Chien-Kang Huang, Chen Liu, Chih-Chin Liu, Shih-Shun Lin, Han-Ching Wang\",\"doi\":\"10.1080/09540091.2023.2268878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The penaeid shrimp farming industry is experiencing rapid growth. To reduce costs and labour, automation techniques such as counting and size estimation are increasingly being adopted. Feeding based on the degree of stomach fullness can significantly reduce food waste and water contamination. Therefore, we propose an intelligent shrimp farming system that includes shrimp detection, measurement of approximated shrimp length, shrimp quantity, and two methods for determining the degree of digestive tract fullness. We introduce AR-YOLOv5 (Angular Rotation YOLOv5) in the system to enhance both shrimp growth and the environmental sustainability of shrimp farming. Our experiments were conducted in a real shrimp farming environment. The length and quantity are estimated based on the bounding box, and the level of stomach fullness is approximated using the ratio of the shrimp´s digestive tract to its body size. In terms of detection performance, our proposed method achieves a precision rate of 97.70%, a recall rate of 91.42%, a mean average precision of 94.46%, and an F1-score of 95.42% using AR-YOLOv5. Furthermore, our stomach fullness determined method achieves an accuracy of 88.8%, a precision rate of 91.7%, a recall rate of 90.9%, and an F1-score of 91.3% in real shrimp farming environments.\",\"PeriodicalId\":50629,\"journal\":{\"name\":\"Connection Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Connection Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09540091.2023.2268878\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Connection Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09540091.2023.2268878","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Counting and measuring the size and stomach fullness levels for an intelligent shrimp farming system
The penaeid shrimp farming industry is experiencing rapid growth. To reduce costs and labour, automation techniques such as counting and size estimation are increasingly being adopted. Feeding based on the degree of stomach fullness can significantly reduce food waste and water contamination. Therefore, we propose an intelligent shrimp farming system that includes shrimp detection, measurement of approximated shrimp length, shrimp quantity, and two methods for determining the degree of digestive tract fullness. We introduce AR-YOLOv5 (Angular Rotation YOLOv5) in the system to enhance both shrimp growth and the environmental sustainability of shrimp farming. Our experiments were conducted in a real shrimp farming environment. The length and quantity are estimated based on the bounding box, and the level of stomach fullness is approximated using the ratio of the shrimp´s digestive tract to its body size. In terms of detection performance, our proposed method achieves a precision rate of 97.70%, a recall rate of 91.42%, a mean average precision of 94.46%, and an F1-score of 95.42% using AR-YOLOv5. Furthermore, our stomach fullness determined method achieves an accuracy of 88.8%, a precision rate of 91.7%, a recall rate of 90.9%, and an F1-score of 91.3% in real shrimp farming environments.
期刊介绍:
Connection Science is an interdisciplinary journal dedicated to exploring the convergence of the analytic and synthetic sciences, including neuroscience, computational modelling, artificial intelligence, machine learning, deep learning, Database, Big Data, quantum computing, Blockchain, Zero-Knowledge, Internet of Things, Cybersecurity, and parallel and distributed computing.
A strong focus is on the articles arising from connectionist, probabilistic, dynamical, or evolutionary approaches in aspects of Computer Science, applied applications, and systems-level computational subjects that seek to understand models in science and engineering.